A New Construction For Harmonic Evolute Surfaces Of Quasi Tangent Surfaces With Quasi Frame

Talat Korpinar and Gul Ugur Kaymanli

ABSTRACT: In this paper, we study a harmonic evolute surface of quasi tangent surface associated with quasi frame. We construct quasi tangent surface with first and second fundamental forms. Moreover, we determine harmonic evolute surface of quasi tangent surface by using these fundamental forms. Finally, we obtain some new results about these new surfaces.

Key Words: Tangent spherical image, Inextensible flows, Curvatures.

Contents

1 Introduction 1
2 Preliminaries 2
3 Harmonic Evolute Surfaces of Tangent Surface 3
4 Conclusion 7

1. Introduction

Surfaces are one of the most interesting subject of differential geometry since the application to physics and engineering especially, geophysics and petroleum engineering is countless [9]-[11], [13]. Ruled surfaces which is generated by the motion of a straight line along a curve are studied widely by many researchers after it was found by Gaspard Mongea. Kimm and Yoon in 2004, Sarıoğlugil and Tutar in 2007, Aydemir and Orbay in 2009, Senturk and Yuce in 2015, Kaymanli et al, in 2019, Korpinar and Kaymanli in 2020 studied ruled surfaces in both Euclidean and Minkowski spaces to name a few [1], [5]-[8], [12], [19], [20].

The harmonic evolute of various surfaces has been studied in depth by many researchers throughout the years. Šipuš and Vladimir researched The harmonic evolute of a surface in Minkowski 3-space in [21]. Following Šipuš and Vladimir’s findings in 2014, Protrka in examined harmonic evolutes of timelike ruled surfaces in Minkowski space in 2015 and the harmonic evolute of a helicoidal surfaces in Minkowski 3-space in 2017 in [17], [18]. Most recently in 2019, Lopez et al, in [15] analyzed harmonic evolutes of B-scrolls with constant mean curvature in Lorentz-Minkowski space. Following these existing studies, we have looked into harmonic evolute surfaces of the ruled surfaces generated by quasi tangent vector by using quasi frame.

This paper is formed of three sections. The first section is about imperative knowledge on the differential geometric construction of the frames in the 3 dimensional Euclidean space that is, Serret Frenet frame, quasi frame and the relation between these frames are examined. By calculating the first and the second fundamental forms, some geometric properties such as Gaussian and the mean curvatures of the surfaces are given. In the second section, we define the harmonic evolute surface of quasi tangent surface associated with quasi frame. The necessary and sufficient conditions of how the quasi tangent surface and its harmonic evolute surface can or can not be a Bonnet surface are given. In addition to this, the quasi tangent surface of a helix and a harmonic evolute of the quasi tangent surface are illustrated.
2. Preliminaries

By way of design and style, this model is kind of a moving frame with regards to a particle. In the quick stages of regular differential geometry, the Frenet-Serret frame was applied to create a curve in location. After that, Frenet-Serret frame is established by way of subsequent equations for a presented framework \[3\],

$$\begin{bmatrix}
\nabla_t t \\
\nabla_t n \\
\nabla_t b \\
\end{bmatrix} =
\begin{bmatrix}
0 & \kappa & 0 \\
\kappa & 0 & \tau \\
0 & -\tau & 0 \\
\end{bmatrix}
\begin{bmatrix}
t \\
n \\
b \\
\end{bmatrix},$$

(1.1)

where $\kappa = ||t||$ and τ are the curvature and torsion of γ, respectively.

After Bishop in 1975 showed that there is more than one way to frame a curve in \[2\], Yilmaz and Turgut introduced second type of Bishop frame in \[22\]. Besides them, Dede et. al. in defined quasi frame \[4\]. The quasi frame of a regular curve γ is given by

$$t_q = t, n_q = \frac{t \wedge k}{||t \wedge k||}, b_q = t_q \wedge n_q,$$

(1.2)

where k is the projection vector.

For simplicity, we have chosen the projection vector $k = (0, 0, 1)$ in this paper. However, the q-frame is singular in all cases where t and k are parallel. Thus, in those cases where t and k are parallel, the projection vector k can be chosen as $k = (0, 1, 0)$ or $k = (1, 0, 0)$.

If the angle between the quasi normal vector n_q and the normal vector n is chosen as ψ, then the following relation is obtained between the quasi and FS frame.

$$t_q = t, n_q = \cos \psi n + \sin \psi b, b_q = -\sin \psi n + \cos \psi b.$$

(1.3)

Therefore, by using the equations $1 - 3$ the variation of parallel adapted quasi frame is obtained by

$$\nabla_{t_q} t_q = \xi_1 n_q + \xi_2 b_q, \\
\nabla_{t_q} n_q = -\xi_1 t_q + \xi_3 b_q, \\
\nabla_{t_q} b_q = -\xi_2 t_q - \xi_3 n_q,$$

where

$$\xi_1 = \kappa \cos \psi, \quad \xi_2 = -\kappa \sin \psi, \quad \xi_3 = \psi' + \tau,$$

and the vector products of the quasi vectors are given by

$$t_q \times n_q = b_q, \quad n_q \times b_q = t_q, \quad b_q \times t_q = n_q.$$

Let n be the standard unit normal vector field on a surface ϕ defined by

$$n = \frac{\phi_s \wedge \phi_t}{||\phi_s \wedge \phi_t||},$$

where $\phi_s = \partial \phi / \partial s$, $\phi_t = \partial \phi / \partial t$, respectively. Then, the first fundamental form I and the second fundamental form II of a surface ϕ are defined by

$$I = Eds^2 + 2Fdsdt + Gdt^2, \\
II = eds^2 + 2fdsdt + gdt^2,$$

where

$$E = \langle \phi_s, \phi_s \rangle, \quad F = \langle \phi_s, \phi_t \rangle, \quad G = \langle \phi_t, \phi_t \rangle, \\
e = \langle \phi_{ss}, n \rangle, \quad f = \langle \phi_{st}, n \rangle, \quad g = \langle \phi_{tt}, n \rangle.$$
On the other hand, the Gaussian curvature K and the mean curvature H are

$$K = \frac{eg - f^2}{EG - F^2}, \quad H = \frac{Eg - 2Ff + Ge}{2(EG - F^2)},$$

and the principal curvatures k_1 and k_2 are

$$k_1 = H + \sqrt{H^2 - K}, \quad k_2 = H - \sqrt{H^2 - K},$$

respectively, $[14], [16]$.

Theorem 2.1. The surface is minimal if and only if it has vanishing mean curvature $[3], [14]$.

3. Harmonic Evolute Surfaces of Tangent Surface

In this section, we aim to explore harmonic evolute surface of quasi tangent surface associated with quasi frame when the mean curvature does not vanish.

Firstly, we construct quasi tangent surface of a quasi curve as

$$\phi_{tq}(s, t) = \alpha + t t_q.$$

Definition 3.1. If $E = G, \quad F = 0, \quad f = c \neq 0$ (c=const.) are satisfied then the surface is called A-net on a surface $[3]$.

Theorem 3.2. A surface to be a Bonnet surface if and only if surface has an A-net $[3]$.

Theorem 3.3. Let ϕ_{tq} be a quasi tangent surface of a quasi curve in space. ϕ_{tq} is minimal iff

$$(\kappa_2(\kappa_1 + t(\kappa_1)_s - \kappa_2 t_x_3) - \kappa_1(\kappa_2 + (\kappa_2)_s t + t \kappa_1 x_3)) = 0.$$

Proof. From the definition of quasi tangent surface, we have

$$\begin{align*}
\phi_{ts}^{tq} &= t_q + t \kappa_1 n_q + \kappa_2 b_q, \\
\phi_{tt}^{tq} &= t_q.
\end{align*}$$

By using this field, the coefficients of the first fundamental form are given

$$E = 1 + t^2 \kappa_1^2 + \kappa_2^2 t^2, \quad F = G = 1.$$

The second partial derivatives of ϕ_{tq} are expressed as follows:

$$\begin{align*}
\phi_{ss}^{tq} &= -(t \kappa_2^2 + \kappa_2^2 t) t_q + (\kappa_1 + t \kappa'_1 - \kappa_2 t \kappa'_3) n_q + (\kappa_2 + \kappa_2' t + t \kappa_1 \kappa_3) b_q, \\
\phi_{ts}^{tq} &= \kappa_1 n_q + \kappa_2 b_q, \\
\phi_{tt}^{tq} &= 0.
\end{align*}$$

So, an algebraic calculus shows that

$$\phi_{s}^{tq} \times \phi_{t}^{tq} = -t \kappa_1 b_q + \kappa_2 t n_q.$$

Moreover, by the definition of the unit normal vector, we have

$$n_{tq} = \frac{\kappa_2}{\sqrt{\kappa_1^2 + \kappa_2^2}} n_q - \frac{\kappa_1}{\sqrt{\kappa_1^2 + \kappa_2^2}} b_q.$$

Therefore, the coefficients of the second fundamental form are given.
A harmonic evolute surface of a quasi tangent surface is given by

\[\phi \left(t \right) = \phi^{tn}_{p} \left(s, t \right) + \frac{1}{H^{tn}_{q}} n^{tn}_{q}. \]

Theorem 3.4. Let \(\phi^{tn}_{p} \) be a quasi tangent surface of a quasi curve in space. \(\phi^{tn}_{p} \) is not a Bonnet surface

A harmonic evolute surface of the quasi tangent surface is given by

\[\phi^{h}(s, t) = \phi^{tn}_{p}(s, t) + \frac{1}{H^{tn}_{q}} n^{tn}_{q}. \]

Theorem 3.5. A harmonic evolute surface of \(\phi^{tn}_{p} \) is given by

\[\phi^{h}(s, t) = \alpha + tt_{q} + \frac{x_{2}}{H^{tn}_{q} \sqrt{x_{1}^{2} + x_{2}^{2}}} n_{q} - \frac{x_{1}}{H^{tn}_{q} \sqrt{x_{1}^{2} + x_{2}^{2}}} b_{q}. \]

Theorem 3.6. A harmonic evolute surface of \(\phi^{tn}_{p} \) is a Bonnet surface if and only if

\[\frac{1}{H^{tn}_{q}} \left(1 + \frac{x_{1}}{H^{tn}_{q} \sqrt{x_{1}^{2} + x_{2}^{2}}} + \frac{x_{2}}{H^{tn}_{q} \sqrt{x_{1}^{2} + x_{2}^{2}}} \right)_{\alpha} = 0, \]

where \(\varphi \) is constant.
Proof. Now, we obtain the derivative formulas

\[
\phi^h_s(s, t) = (1 + \frac{x_2 x_1}{H^t a \sqrt{x_1^2 + x_2^2}} - \frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}}) t_q + (\frac{x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s
\]

\[\]

\[
+ \frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}} + t x_2) n_q + (\frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s + (\frac{x_1}{H^t a \sqrt{x_1^2 + x_2^2})_t + t x_2) b_q, \]

\[
\phi^h_t(s, t) = t_q + (\frac{x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s n_q - (\frac{x_1}{H^t a \sqrt{x_1^2 + x_2^2}})_t b_q. \]

Then, it is easy to see that

\[
E^{\phi^h} = (1 + \frac{x_2 x_1}{H^t a \sqrt{x_1^2 + x_2^2}} - \frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}})^2 + (\frac{x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s
\]

\[\]

\[
+ \frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}} + t x_2)^2 + (\frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s + (\frac{x_1}{H^t a \sqrt{x_1^2 + x_2^2}})_t + t x_2)^2, \]

\[
F^{\phi^h} = (\frac{x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s + \frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}} + t x_2) + (\frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s + t x_2)^2 \]

\[\]

\[
- (\frac{x_1}{H^t a \sqrt{x_1^2 + x_2^2}})_s + (\frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s + t x_2)^2 + (\frac{x_1}{H^t a \sqrt{x_1^2 + x_2^2}})_t + t x_2)^2, \]

\[
G^{\phi^h} = 1 + (\frac{x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s + (\frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s + t x_2)^2. \]

We instantly calculate

\[
\phi^h_{ss}(s, t) = (1 + \frac{x_2 x_1}{H^t a \sqrt{x_1^2 + x_2^2}} - \frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s - x_2 (\frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s - (\frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s
\]

\[\]

\[
+ t x_2 - x_1 (\frac{x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s + \frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}} + t x_1) + (\frac{x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s - x_2 (\frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s - (\frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s
\]

\[\]

\[
- \frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}}) x_1 + (\frac{x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s + \frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}} + t x_1)_s - x_2 (\frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s - (\frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s + t x_2)_s b_q, \]

\[
\phi^h_{ts}(s, t) = \frac{x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s + \frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}} + t x_1 + (\frac{x_1}{H^t a \sqrt{x_1^2 + x_2^2}})_s - (\frac{x_1}{H^t a \sqrt{x_1^2 + x_2^2}})_s + t x_2)_s b_q. \]

With the help of the obtained equations, we express

\[
n_h^{t_a} = -\frac{1}{\pi} ((\frac{x_1}{H^t a \sqrt{x_1^2 + x_2^2}})_s + (\frac{x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s + \frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}} + t x_1) + (\frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s
\]

\[\]

\[
- \frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}} (\frac{x_1}{H^t a \sqrt{x_1^2 + x_2^2}})_s - \frac{x_1}{H^t a \sqrt{x_1^2 + x_2^2}}) + (\frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s + (\frac{x_1}{H^t a \sqrt{x_1^2 + x_2^2}})_t + t x_2)_s n_q
\]

\[\]

\[
+ \frac{1}{\pi} ((1 + \frac{x_2}{H^t a \sqrt{x_1^2 + x_2^2}}) - \frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}}) (\frac{x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s - (\frac{x_2}{H^t a \sqrt{x_1^2 + x_2^2}})_s
\]

\[\]

\[
+ \frac{x_1 x_2}{H^t a \sqrt{x_1^2 + x_2^2}} + t x_1)_s b_q, \]
Then

$$e^{\phi_h} = -((1 + \frac{x_2 x_2}{H^4 x_1^2 + x_2^2})_s + \frac{x_1 x_2}{H^4 x_1^2 + x_2^2})_s - x_2(\frac{x_1 x_2}{H^4 x_1^2 + x_2^2} - (\frac{x_1}{H^4 x_1^2 + x_2^2})_s + t x_2))$$

$$-x_2((\frac{x_1 x_2}{H^4 x_1^2 + x_2^2})_s + (\frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + t x_1)) \times \frac{1}{\pi}((\frac{x_1}{H^4 x_1^2 + x_2^2})_s + (\frac{x_1}{H^4 x_1^2 + x_2^2})_s + t x_1)(\frac{x_2}{H^4 x_1^2 + x_2^2})$$

$$+x_2((\frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + t x_1)_s + (\frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + t x_1)(\frac{x_2}{H^4 x_1^2 + x_2^2})$$

$$+((1 + \frac{x_2 x_2}{H^4 x_1^2 + x_2^2})_s - \frac{x_1 x_2}{H^4 x_1^2 + x_2^2}} + \frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + t x_1)_s$$

$$-x_3((\frac{x_1 x_2}{H^4 x_1^2 + x_2^2} - \frac{x_1 x_2}{H^4 x_1^2 + x_2^2})_s + t x_2)) \times \frac{1}{\pi}((\frac{x_1 x_2}{H^4 x_1^2 + x_2^2} - \frac{x_1 x_2}{H^4 x_1^2 + x_2^2})_s + (\frac{x_1 x_2}{H^4 x_1^2 + x_2^2})_s + t x_2)(\frac{x_3 x_2}{H^4 x_1^2 + x_2^2})$$

$$-x_3((\frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + t x_2)_s + (\frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + t x_2)(\frac{x_3 x_2}{H^4 x_1^2 + x_2^2})$$

$$-((\frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + t x_2)_s + \frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + t x_1))$$

$$g^{\phi_h} = \frac{1}{\pi}((\frac{x_2}{H^4 x_1^2 + x_2^2})_s + \frac{x_1 x_2}{H^4 x_1^2 + x_2^2} - \frac{x_1 x_2}{H^4 x_1^2 + x_2^2})(\frac{x_2}{H^4 x_1^2 + x_2^2})$$

$$+(\frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + \frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + t x_1)_s - ((\frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + \frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + t x_1))(\frac{x_2}{H^4 x_1^2 + x_2^2})$$

$$-x_1((\frac{x_2}{H^4 x_1^2 + x_2^2})_s + \frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + t x_1)_s$$

$$x_1((\frac{x_2}{H^4 x_1^2 + x_2^2} + t x_1)_s + (\frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + t x_1)(\frac{x_2}{H^4 x_1^2 + x_2^2})$$

$$+((\frac{x_2}{H^4 x_1^2 + x_2^2} + t x_1)_s + \frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + t x_1)_s$$

$$+(\frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + \frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + t x_1)_s - ((\frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + \frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + t x_1))(\frac{x_2}{H^4 x_1^2 + x_2^2})$$

$$-x_1((\frac{x_2}{H^4 x_1^2 + x_2^2} + t x_1)_s + \frac{x_1 x_2}{H^4 x_1^2 + x_2^2} + t x_1)$$.}

Consequently, using the definition of a Bonnet surface, we have proved the theorem.
4. Conclusion

In conclusion, a harmonic evolute surface of quasi tangent surface associated with quasi frame was studied throughout this paper. Initially, quasi tangent surface was constructed. We then established harmonic evolute surface of quasi tangent surface by using quasi frame and mean curvature. Finally, our studies have enabled us to gain new results about these surfaces.

References

Talat Korpinar,
Department of Mathematics,
Mus Alparslan University,
Turkey.
E-mail address: talatkorpinar@gmail.com

and

Gül Ugur Kaymanli,
Department of Mathematics,
Cankiri Karatekin University,
Turkey.
E-mail address: gulgurk@karatekin.edu.tr