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abstract: In this paper, we study the twisted Hessian curve denoted Hn
a,d

over the ring Rn = Fq[X]/(Xn),

where Fq is a finite field of q elements, with q is a power of a prime number p ≥ 5 and n ≥ 5. In a first time,
we describe these curves over this ring. In addition, we prove that when p doesn’t divide #(Hπ(a), π(d)), then
Hn

a,d
is a direct sum of Hπ(a), π(d) and the maximal ideal of Rn, where Hπ(a), π(d) is the twisted Hessian

curve over Fq. Other results are deduced from, we cite the equivalence of the discrete logarithm problem on
the twisted Hessian curves Hn

a,d
and Hπ(a), π(d), which is beneficial for cryptography and cryptanalysis as

well.

Key Words: Discrete logarithm problem, elliptic curve, twisted Hessian curve, finite ring, cryptog-
raphy.
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1. Introduction

In 2001, Smart [15] introduced a new normal form of elliptic curves over a field Fq with q ∈ 2+3Z. He
showed that any elliptic curve over Fq which has a Fq-rational point of order 3 is birationally equivalent
over some extension of Fq to a curve with an equation of the form X3 + Y 3 + Z3 = DXY Z. Recently,
Bernstein and al [1] introduced the twisted Hessian curves with an equation

Ha,d : aX3 + Y 3 + Z3 = dXY Z,

where a, d ∈ Fq and a(27a− d3) 6= 0.
Elliptic curves are often used in cryptography, and this is where twisted Hessian curves have their

advantages: addition, doubling and tripling can be performed faster on twisted Hessian curves than on
curves given by a Weierstrass equation. This is because the addition law on twisted Hessian curves has
no exceptions, whereas the addition on Weierstrass curves. The normal form proposed by Bernstein and
al [1] has very desirable cryptographic properties that allow to fight against the leakage of side-channel
information from the beginning, because the group law is complete and unified. Moreover, in many
cases, the group law involves fewer operations, which means that the safer calculations involved can also
be faster. So, the twisted Hessian curve helps to efficiently foil side-channel attacks in the context of
elliptic curve cryptography. Furthermore, the operations on twisted Hessian curves are more efficient
than the Weierstrass form of elliptic curves and the discrete logarithm problem is hard to solve. This
makes twisted Hessian curves suitable for cryptographic applications. However, there are exponential
time algorithms [10,13] that compute discrete logarithms for the cyclic subgroup of the elliptic curve. To
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ensure maximum security of the cryptographic system, the elliptic curve must be properly chosen. For
this objective, we present in this paper the twisted Hessian curve over the ring Fq[X ]/(Xn) which verifies
this property because it increases the time needed to solve the discrete logarithm problem, we will prove
that #(Hn

a,d) = pb(n−1)#(Hπ(a), π(d)). As a result, we can note that the time for solving the discrete
logarithm problem on Hn

a,d is greater than that of the twisted Hessian curve on a finite field.
In [5,6], we introduced these curves over the ring R2, and in [7] we presented the cryptography over

twisted Hessian curves over the same ring. In [9] we defined the twisted Hessian curve over the ring R3

and we presented its application in cryptography, then in [8] we introduced a new cryptosystem based
on a twisted Hessian curve H4

a,d. In this article, our contribution is an extension of the twisted Hessian
curve on the local ring Fq[X ]/(Xn) for all integers n ≥ 5. The novelty of this approach is to get a huge
number of points with a smaller prime p, because we will prove that the cardinal of this twisted Hessian
curve Hn

a,d is greater than that of Hπ(a), π(d) and it is equal to pb(n−1) ×Hπ(a), π(d), so we may reserve up
memory once we do the calculations. Moreover, the time required to solve the discrete logarithm problem
on Hn

a,d is greater than that of the twisted Hessian curve on a finite field.
This paper is organized as follows. In Section 2, We study the arithmetic of the ring Rn, where we

establish some useful results which are necessary for the rest of this paper. In the third section, we will
define the twisted Hessian curves over Fq[ǫ] and we will classify the elements of the twisted Hessian curve
Hn

a,d. Afterwards, we will define the group law of Hn
a,d and we will show that Hn

a,d is a direct sum of
Hπ(a), π(d) and the maximal ideal of Rn, when p doesn’t divide #(Hπ(a), π(d)).
Another purpose of this paper is the application of Hn

a,d in cryptography. Thereby, in Section 4, we
deduce some cryptographic applications.

2. Arithmetic Over the Ring Fq[X ]/(Xn)

Let p be a prime number ≥ 5 such that −3 is not a square in Fp. We consider the quotient ring
Rn = Fq[X ]/(Xn), where Fq is the finite field of characteristic p and q elements. Then the ring Rn can
be identified by the ring Fq[ǫ], ǫn = 0. In other words,

Rn = {

n−1
∑

j=0

xjǫ
j/xj ∈ Fq for j = 0...(n− 1)}.

Now, we will give some results concerning the ring Rn, which are useful for the rest of this work.
Let two elements in Rn represented by X =

∑n−1
j=0 xjǫ

j and Y =
∑n−1

j=0 yjǫ
j with coefficients xj and

yj are in the field Fq for (j = 0...(n− 1)).
The arithmetic operations in Rn can be decomposed into operations in Fq and they are calculated as

follows:

X + Y =
n−1
∑

j=0

(xj + yj)ǫj

X.Y =

n−1
∑

j=0

Zjǫ
j where Zj =

j
∑

i=0

xiyj−i

Similar as in [2] we have the following results:

• (Rn,+, .) is a finite unitary commutative ring.

• Rn is a vector space over Fq and has (1, ǫ, ǫ2, ...ǫn−1) as a basis.

• Rn is a local ring. Its maximal ideal is M = (ǫ) = ǫFq.

• Let Y =
∑n−1

j=0 yjǫ
j , be the inverse of the element X =

∑n−1
j=0 xjǫ

j , then

{

y0 = x−1
0

yi = −x−1
0

∑i−1
j=0 yjxi−j ; for i > 0.
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Remark 2.1. The canonical projection π defined by:

π Rn → Fq
∑n−1

j=0 xjǫ
j 7→ x0

is a surjective homomorphism of rings.

3. Twisted Hessian Curves Over the Ring Rn

Definition 3.1. We consider the twisted Hessian curve over the ring Rn in the projective space P
2(Rn),

which is given by the equation: aX3 + Y 3 + Z3 = dXY Z, where a, d ∈ Rn and a(27a− d3) is invertible
in Rn, and denoted by Hn

a,d. So we have:

Hn
a,d = {[X : Y : Z] ∈ P

2(Rn) \ aX3 + Y 3 + Z3 = dXY Z}.

3.1. Classification of Elements of Hn
a,d

To have a clear idea of the twisted Hessian curves over the ring Rn, we can classify its elements
according to their projective coordinate. This is the subject of the following proposition.

Proposition 3.2. Every element in Hn
a,d is of the form [1 : Y : Z] (where Y or Z ∈ Rn\M) or [X : Y : 1]

(where X ∈ M), and we write:
Hn

a,d = {[1 : Y : Z] ∈ P
2(Rn) \ a+Y 3 +Z3 = dY Z, and Y or Z ∈ Rn \M}∪{[X : Y : 1] \ aX3 +Y 3 +1 =

dXY, and X ∈ M}.

Proof. Let [X : Y : Z] ∈ Hn
a,d, where X , Y and Z ∈ Rn.

• If X is invertible, [X : Y : Z] = [1 : X−1Y : X−1Z] ∼ [1 : Y : Z]. Suppose that Y and Z ∈ M ;
since a+ Y 3 + Z3 = dY Z then a ∈ M , which is absurd. So, Y or Z ∈ Rn \M .

• If X is non invertible, then X ∈ M , so X =
∑n−1

j=1 xjǫ
j , where xj ∈ Fq. So we have two cases for

Z:

1. Z invertible : [X : Y : Z] = [XZ−1 : Y Z−1 : 1] ∼ [X : Y : 1].

2. Z non invertible: We have X and Z ∈ M , since aX3 +Y 3 +Z3 = dXY Z, then Y 3 ∈ M and so
Y ∈ M . We deduce that [X : Y : Z] isn’t a projective point because (X,Y, Z) isn’t a primitive
triple [ [11], pp. 104-105].

�

In the following lemma, we show that the elements of Hn
a,d of the form [X : Y : 1] are entirely

determined by their first projective coordinate X :

Lemma 3.3. Let [X : Y : 1] ∈ Hn
a,d, where X ∈ M .

If X =
∑n−1

j=1 xjǫ
j, then Y = −1 +

∑n−1
j=1 x

′
jǫ

j, where x′
j are function of x1, ..., xn−1, and is denoted by

YX .

Proof. Let [X : Y : 1] ∈ Hn
a,d, where X =

∑n−1
j=1 xjǫ

j , Y =
∑n−1

j=0 yjǫ
j , a =

∑n−1
j=0 ajǫ

j and d =
∑n−1

j=0 djǫ
j

then,

X3 =
∑

|
−→
k |=3

C
|
−→
k |

3

n−1
∏

j=1

(xjǫ
j)kj

such that |
−→
k |=

∑n−1
j=1 kj

Y 3 =
∑

|
−→
t |=3

C
|
−→
t |

3

n−1
∏

j=0

(yjǫ
j)tj
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such that |
−→
t |=

∑n−1
j=0 tj

XY =
n−1
∑

j=0

j
∑

i=0

xiyj−iǫ
j

dXY =

n−1
∑

t=0

t
∑

k=0

dk

t−k
∑

i=0

xiyt−k−iǫ
t

So, aX3 + Y 3 + Z3 = dXY Z ⇔

n−1
∑

j=0

ajǫ
j

∑

|
−→
k |=3

C
|
−→
k |

3

n−1
∏

i=1

(xiǫ
i)ki +

∑

|
−→
t |=3

C
|
−→
t |

3

n−1
∏

i=0

(yiǫ
i)ti + 1 =

n−1
∑

t=0

t
∑

k=0

dk

t−k
∑

i=0

xiyt−k−iǫ
t

By multiplying both sides of the last equation by ǫn−2 we find y0 = −1 and y1 = − 1
3d0x1. And the same

we are multiplying both sides of the equation by ǫn−k−1 we find by identification of the coefficients of
ǫn−1 in both sides that yk is a function of x1, ..., xn−1.

�

Corollary 3.4. Let X ∈ M , then there exists a unique Y ∈ M such that [X : −1 + Y : 1] ∈ Hn
a,d.

From lemma 3.3, we deduce that Y exists such that [X : −1 + Y : 1] ∈ Hn
a,d.

Let prove that Y is unique.
Suppose that there exist Y, Y ′ ∈ M , such that: [X : −1 + Y : 1] ∈ Hn

a,d and [X : −1 + Y ′ : 1] ∈ Hn
a,d.

We have :
{

aX3 + (Y − 1)3 + 1 = dX(Y − 1)

aX3 + (Y ′ − 1)3 + 1 = dX(Y ′ − 1),

this implies that,
(Y − 1)3 − (Y ′ − 1)3 = dX(Y − Y ′)

then,
(Y − Y ′)(3 + Y 2 − 2Y + Y Y ′ − Y − Y ′ + Y ′2 − 2Y ′ − dX) = 0

Or Y 2 − 2Y + Y Y ′ − Y − Y ′ + Y ′2 − 2Y ′ − dX ∈ M thus, Y = Y ′.

3.2. Group Law Over Hn
a,d

After classifying the elements of twisted Hessian curve Hn
a,d we will define the group law on it.

We firstly consider the mapping defined by:

π̃ : Hn
a,d → Hπ(a), π(d)

[X : Y : Z] 7→ [π(X) : π(Y ) : π(Z)]

where Hπ(a), π(d) is the twisted Hessian curve over Fq.

Then, we are ready to define the group law on Hn
a,d by the following theorem:

Theorem 3.5. Let P = [X1 : Y1 : Z1] and Q = [X2 : Y2 : Z2] two points in Hn
a,d.

1. Define:
X3 = X2

1Y2Z2 −X2
2Y1Z1,

Y3 = Z2
1X2Y2 − Z2

2X1Y1,

Z3 = Y 2
1 X2Z2 − Y 2

2 X1Z1.

If π̃([X3 : Y3 : Z3]) 6= [0 : 0 : 0] then P +Q = [X3 : Y3 : Z3].
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2. Define:

X ′
3 = Z2

2X1Z1 − Y 2
1 X2Y2,

Y ′
3 = Y 2

2 Y1Z1 − aX2
1X2Z2,

Z ′
3 = aX2

2X1Y1 − Z2
1Y2Z2.

If π̃([X ′
3 : Y ′

3 : Z ′
3]) 6= [0 : 0 : 0] then P +Q = [X ′

3 : Y ′
3 : Z ′

3].

Proof. We can prove the theorem by using [ [1], Theorem 3.2 and 4.2]. �

Corollary 3.6. (Hn
a,d,+) is a commutative group with unity [0 : −1 : 1].

Corollary 3.7. Let [X1 : YX1 : 1] and [X2 : YX2 : 1] two points in Hn
a,d, then:

[X1 : YX1 : 1] + [X2 : YX2 : 1] = [X3 : YX3 : 1]

such that:

X3 =
X1 − Y 2

X1
X2YX2

aX2
2X1YX1 − YX2

YX3 =
Y 2

X2
YX1 − aX2

1X2

aX2
2X1YX1 − YX2

Proof. By theorem 3.5, we deduce:

[X1 : YX1 : 1] + [X2 : YX2 : 1] = [A : B : C]

such that:

A = X1 − Y 2
X1
X2YX2

B = Y 2
X2
YX1 − aX2

1X2

C = aX2
2X1YX1 − YX2

so C is invertible, then the results. �

The group law is now defined on Hn
a,d, we will give some of its properties and homomorphisms defined

on it.

Theorem 3.8. Let a = ã + an−1ǫ
n−1, d = d̃+ dn−1ǫ

n−1, X = X̃ + Xn−1ǫ
n−1, Y = Ỹ + Yn−1ǫ

n−1 and
Z = Z̃ + Zn−1ǫ

n−1 be elements of Rn, which verified the equation:

aX3 + Y 3 + Z3 = dXY Z.

Then

ãX̃3 + Ỹ 3 + Z̃3 = d̃X̃Ỹ Z̃ + (D +AXn−1 +BYn−1 + CZn−1)ǫn−1,

where

D = dn−1X0Y0Z0 − an−1X
3
0 ,

A = d0Y0Z0 − 3a0X
2
0 ,

B = d0X0Z0 − 3Y 2
0 ,

C = d0Y0X0 − 3Z2
0 .
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Proof. Let a = ã + an−1ǫ
n−1, d = d̃ + dn−1ǫ

n−1, X = X̃ + Xn−1ǫ
n−1, Y = Ỹ + Yn−1ǫ

n−1 and Z =
Z̃ + Zn−1ǫ

n−1 be elements of Rn. Then:

Y 3 = Ỹ 3 + 3Ỹ 2Yn−1ǫ
n−1

Z3 = Z̃3 + 3Z̃2Zn−1ǫ
n−1

aX3 = ãX̃3 + 3ãX̃2Xn−1ǫ
n−1 + an−1X̃

3ǫn−1

dXY Z = d̃X̃Ỹ Z̃ + (dn−1X̃Ỹ Z̃ + d̃X̃Ỹ Zn−1 + d̃X̃Yn−1Z̃ + d̃Ỹ Z̃Xn−1)ǫn−1.

If [X : Y : Z] ∈ Hn
a,d, then

aX3 + Y 3 + Z3 = dXY Z,

so,

ãX̃3 + Ỹ 3 + Z̃3 = d̃X̃Ỹ Z̃ + (dn−1X0Y0Z0 − an−1X
3
0 + (d0Y0Z0 − 3a0X

2
0 )Xn−1 +

(d0X0Z0 − 3Y 2
0 )Yn−1 + (d0Y0X0 − 3Z2

0)Zn−1)ǫn−1,

thus,

ãX̃3 + Ỹ 3 + Z̃3 = d̃X̃Ỹ Z̃ + (D +AXn−1 +BYn−1 + CZn−1)ǫn−1,

where,

D = dn−1X0Y0Z0 − an−1X
3
0 ,

A = d0Y0Z0 − 3a0X
2
0 ,

B = d0X0Z0 − 3Y 2
0 ,

C = d0Y0X0 − 3Z2
0 .

�

Lemma 3.9. The mapping

π̃ : Hn
a,d → Hπ(a),π(d)

[X : Y : Z] 7→ [π(X) : π(Y ) : π(Z)]

is a surjective homomorphism of groups.

Proof. From Theorem 3.8; π̃ is well defined, and from Theorem 3.5 we prove that π̃ is a homomorphism.
Let [X0 : Y0 : Z0] ∈ Hπ(a),π(d), then there exists [X : Y : Z] ∈ Hn

a,d such that π̃([X : Y : Z]) = [X0 : Y0 :
Z0].

Indeed, by Theorem 3.8, we have

D = −(AXn−1 +BYn−1 + CZn−1)

Coefficients −A, −B and −C are partial derivative of a function

F (X,Y, Z) = aX3 + Y 3 + Z3 − dXY Z

at the point (X0, Y0, Z0), cannot be all three null. At last, we will then conclude that [Xn−1 : Yn−1 : Zn−1].
Finally, π̃ is a surjective.

�

Since [X : YX : 1] is entirely determined by its first projective coordinate X . So, we have to define
another law on M by the following definition:
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Definition 3.10. We define on the set M the law ∗ by:

X1 ∗X2 =
X1 − Y 2

X1
X2YX2

aX2
2X1YX1 − YX2

∗ is well defined, so from the corollary 3.4 we have for X ∈ M , then there exists a unique Y ∈ M
such that [X : −1 + Y : 1] ∈ Hn

a,d.

Lemma 3.11. (M, ∗) is an abelian group with 0 as unity.

From Theorem 3.5, we deduce the following lemma:

Corollary 3.12. Let X1, X2 ∈ M we have :

YX1∗X2 =
Y 2

X2
YX1 − aX2

1X2

aX2
2X1YX1 − YX2

Lemma 3.13. The mapping
ψ : (M, ∗) → (Hn

a,d,+)

X 7→ [X : YX : 1]

is an injective homomorphism of groups.

Proof. From Lemma 3.3, we deduce that ψ is well defined.
We have ψ(0) = [0 : −1 : 1] and for all X1 and X2 ∈ M :

ψ(X1 ∗X2) = [X1 ∗X2 : YX1∗X2 : 1]

From corollary 3.7 and corollary 3.12 we deduce that:

[X1 ∗X2 : YX1∗X2 : 1] = [X1 : YX1 : 1] + [X2 : YX2 : 1],

then ψ is a group homomorphism.

It remains to prove that ψ is injective. Let X ∈ ker(ψ), then ψ(X) = [X : YX : 1] = [0 : −1 : 1]
therefore X = 0. This proves that ψ is injective. �

From Proposition 3.2 and Lemma 3.3 we deduce the following lemma:

Lemma 3.14. Ker (π̃) = Im (ψ).

Proof. Let [X : YX : 1] ∈ Im(ψ), then

π̃([X : YX : 1]) = [0 : −1 : 1]

and so, Imψ ⊂ Ker π̃.
Conversely, let [X : Y : Z] ∈ Ker π̃, then

[x0 : y0 : z0] = [0 : −1 : 1],

so Z is invertible, and from Proposition 3.2: X ∈ M so, [X : Y : Z] ∼ [X : Y : 1]; and from Lemma 3.3

[X : Y : Z] ∼ [X : YX : 1] ∈ Im ψ.

So Ker π̃ ⊂ Imψ.
Finally, Ker π̃ = Imψ. �
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Corollary 3.15. The subset G = ker(π̃) is a subgroup of Hn
a,d and every element P in G there exists an

integer k such that pkP = [0 : −1 : 1].

Proof. Since ψ is injective, then M ≃ Im (ψ) = Ker (π̃), and #(M) = (pb)n−1 this prove the corollary.
�

From Lemmas 3.9, 3.13 and 3.14, we deduce the following corollary:

Corollary 3.16. The short sequence

O // Kerπ̃
j

// Hn
a,d

π̃
// Hπ(a), π(d)

// 0

is exact, where j is the canonical injection.

Now, we prove that when p doesn’t divide the cardinality of Hπ(a), π(d), then Hπ(a), π(d) is a direct
factor of Hn

a,d, and we deduce from there some useful results.

Theorem 3.17. Let N = #(Hπ(a), π(d)) the cardinality of Hπ(a), π(d). If p doesn’t divide N , then the
short exact sequence:

O // Kerπ̃
i

// Hn
a,d

π̃
// Hπ(a), π(d)

// 0

is split.

Proof. Suppose that p doesn’t divide N , then pk doesn’t divide N (where k is defined in Corollary 3.15),
so there exists an integer λ such that Nλ = 1 mod pk. Therefore, there exists an integer α such that
1 −Nλ = pk α.
Let f the homomorphism defined by:

f : Hn
a,d → Hn

a,d

P 7→ (1 −Nλ)P

Then, there exists a unique morphism g, such that the following diagram commutes:

Hn
a,d

f
//

π̃
%%❏

❏❏
❏❏

❏❏
❏❏

❏
Hn

a,d

Hπ(a), π(d)

g

99tttttttttt

Indeed, let P ∈ ker(π̃) = Im φ, then by Corollary 3.15:

(1 −Nλ)P = pkαP = [0 : −1 : 1],

so P ∈ ker(f). It follows that ker(π̃) ⊆ ker(f), this proves the above assertion.
Now we prove that π̃ ◦ g = idHπ(a), π(d)

. Let Q ∈ Hπ(a), π(d), since π̃ is surjective, then there exists a
P ∈ Hn

a,d such that π̃(P ) = Q. We have NQ = [0 : −1 : 1], then

Nπ̃(P ) = [0 : −1 : 1] and π̃(NP ) = [0 : −1 : 1],

implies that NP ∈ ker(π̃) and so, NλP ∈ ker(π̃); therefore, π̃(NλP ) = [0 : −1 : 1]. Moreover,

g(Q) = (1 −Nλ)P = P −NλP,

then
π̃ ◦ g(Q) = π̃(P ) − [0 : −1 : 1] = Q

and so, π̃ ◦ g = idHπ(a), π(d)
.

Thus the sequence is split. �
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Corollary 3.18. If p doesn’t divide #(Hπ(a), π(d)) then, Hn
a,d is isomorphic to Hπ(a), π(d) ×M .

Proof. From the Theorem 3.17 the sequence

O // Kerπ̃
j

// Hn
a,d

π̃
// Hπ(a), π(d)

// 0

is split then, Hn
a,d

∼= Hπ(a), π(d) × ker(π̃), and since ker(π̃) ∼= Im φ ∼= M , then the corollary is proved. �

4. Cryptographic Applications

In this section, we give some cryptography results, other more practical applications are going to be
given in our future works.
If p doesn’t divide the cardinality of Hπ(a), π(d) then, form Corollary 3.18 we deduce the following results:

• The discrete logarithm problem in Hn
a,d is equivalent to that in Hπ(a), π(d).

• #(Hn
a,d) = pb(n−1) × #(Hπ(a), π(d))

This is an important and useful factor in cryptography since it allows to obtain a huge number of
points with a smaller prime number p. As a consequence, we can notice that the time needed to solve
the discrete logarithm problem on Hn

a,d is larger than that of the twisted Hessian curve on a finite field.

5. Conclusion

In this paper, we have studied the twisted Hessian curves over Rn and we have proved the bijection
between Hn

a,d and Hπ(a), π(d) ×M . For cryptography applications, we deduce that the discrete logarithm

problem on Hn
a,d is equivalent to the on on Hπ(a), π(d) and #(Hn

a,d) = pb(n−1)#(Hπ(a), π(d)).
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