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A Generalization of a Result on Generating Functions of Modified Laguerre Polynomial

by Using the Notion of Partial Quasibilinear Generating Function

Amartya Chongdar and Prakash Mukherjee

abstract: In his paper [2], Chongdar obtained an extension (Theorem 3) of the result on bilateral gener-
ating functions involving modified Laguerre polynomial stated in Theorem 1 of Ghosh [3].

In this article, the present authors have made an attempt to present a further generalization of the extension
obtained by Chongdar [2] by means of the theory of one parameter group of continuous transformations as
well as using the concepts of partial quasibilateral generating function [4] involving some special functions.

Key Words: Modified Laguerre polynomial, quasibilateral (or quasibilinear) generating function,
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1. Preliminary concepts and introduction

Special functions are the solutions of a wide class of mathematically and physically relevant func-
tional equations. Generating functions play a large role in the study of special functions. The generating
functions which are available in the literature are almost bilateral in nature. There is dearth of trilateral
generating functions. Apart from these, some other terms viz quasibilateral (or quasibilinear), partial
quasibilateral (or partial quasibilinear), partial semibilateral (or partial semibilinear) generating function
etc. are also found in the literature.

In the present paper, we have considered a problem involving partial quasibilinear generating function
[4] which is defined by the following generating relation:

G(x, z, w) =

∞
∑

n=0

anwnP
(α)
m+n(x)Q(m+n)

r (z), (1.1)

where an are arbitrary constants and independent of x, z. P
(α)
m+n(x) and Q

(m+n)
r (z) are two special func-

tions of orders m + n, r and of parameters α, m + n respectively. If, in particular, the above two special

functions are of same in nature i.e. Q
(m+n)
r (z) ≡ P

(m+n)
r (z), we call the generating relation (1.1) as

partial quasi-bilnear generating relation. For example, if we replace P
(α)
m+n(x), Q

(m+n)
r (z) by L

(α)
m+n(x),

C
(m+n)
r (z) respectively, then (1.1) is called partial quasibilateral generating relation involving Laguerre

and Gegenbauer polynomials [5] and if we replace P
(α)
m+n(x), Q

(m+n)
r (z) by the same type of polynomials,

L
(α)
m+n(x), L

(m+n)
r (z) (say), we call the relation (1.1) as partial quasibilinear generating relation involving

Laguerre polynomials [6] etc.
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There are different methods of obtaining generating functions for various special functions. In this
problem, we have used the group-theoretic method which has been receiving much attention in recent
years. The idea of group-theoretic method in the investigation of generating functions for various special
functions was introduced by L. Weisner [7,8,9] while investigating Hypergeometric, Hermite and Bessel
functions.

In [3], Ghosh obtained the following result on bilateral generating function involving modified Laguerre
polynomial.

Theorem 1.1. If

G(x, t) =

∞
∑

n=0

anfβ−n
n (x) tn, (1.2)

then

∞
∑

n=0

fβ−n
n (x)σn(y)tn = (1 + t)β−1exp

( xt

1 + t

)

G
( x

1 + t
,

yt

1 + t

)

(1.3)

where

σn(y) =

n
∑

p=0

ap

(

n

p

)

yp.

Subsequently, an extension of the above theorem was found derived in [2] in the following form :

Theorem 1.2. If there exists a generating relation of the form,

G(x, t) =

∞
∑

n=0

anf
β−n
n+k (x)tn, (1.4)

then

∞
∑

n=0

f
β−n
n+k (x)σn(y)tn = (1 + t)β−1exp

( xt

1 + t

)

G
( x

1 + t
,

yt

1 + t

)

(1.5)

where

σn(y) =

n
∑

p=0

ap

(k + p + 1)n−p

(n − p)!
yp.

The above theorems are very much important for their usefulness in the generalization of known re-
sults.

The object of the present paper is to further generalize the Theorem 1.2 by means of group-theoretic
method based on the theory of one parameter group of continuous transformations and by using the
concept of partial quasibilateral generating function as defined in [4]. The main result of this paper is
given in the form of the following theorem.

Theorem 1.3. If there exists a generating relation of the form :

G(x, u, w) =
∞
∑

n=0

anf
β−n
n+r (x)fn+r

m (u)wn, (1.6)
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then

(1 + w)−m−r(1 − w)β−1exp
(

−xw

1 − w

)

G
( x

1 − w
, u(1 + w),

wv

(1 − w)(1 + w)

)

=

∞
∑

n=0

∞
∑

p=0

∞
∑

q=0

an

wn+p+q

p!q!
vn(−1)p+q(n + r + 1)p(n + r)qf

β−n−p
n+r+p (x)fn+r+q

m (u). (1.7)

The above theorem did not seem to appear before. In the next section we shall prove it.

2. Proof of the theorem 1.3

To prove the theorem 1.3, we first consider two linear partial differential operators R1 and R2, each
of which generates one parameter continuous transformations group, as follows :

R1 = xy
∂

∂x
+ y2 ∂

∂y
− y(β + x − 1)

,

R2 = ut
∂

∂u
− t2 ∂

∂t
− (m + r)t

such that

R1

(

f
β−n
n+r (x)yn

)

= −(n + r + 1)fβ−n−1
n+r+1 (x)yn+1 (2.1)

R2

(

fn+r
m (u)tn

)

= −(n + r)fn+r+1
m (u)tn+1 (2.2)

and

ewR1f(x, y) = exp
(

−

xyw

1 − yw

)

(1 − yw)β−1f
( x

1 − yw
,

y

1 − yw

)

(2.3)

ewR2f(u, t) = (1 + wt)−m−rf
(

u(1 + wt),
t

1 + wt

)

. (2.4)

Let us now consider the generating relation :

G(x, u, w) =

∞
∑

n=0

anf
β−n
n+r (x)fn+r

m (u)wn. (2.5)

Replacing w by wytv on both sides of (2.5), we get

G(x, u, wytv) =

∞
∑

n=0

an

(

f
β−n
n+r (x)yn

)(

fn+r
m (u)tn

)

(wv)n. (2.6)

Now operating ewR1ewR2 on both sides of (2.6), we get

ewR1ewR2G(x, u, wytv) = ewR1ewR2

[

∞
∑

n=0

an

(

f
β−n
n+r (x)yn

)(

fn+r
m (u)tn

)

(wv)n

]

. (2.7)

The left member of (2.7), with the help of (2.3) and (2.4), becomes

(1 + wt)−m−rexp
(

−

xyw

1 − yw

)

(1 − yw)β−1G
( x

1 − yw
, u(1 + wt),

wytv

(1 − yw)(1 + wt)

)

. (2.8)
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The right member of (2.7), with the help of (2.1) and (2.2), becomes

∞
∑

n=0

∞
∑

p=0

∞
∑

q=0

an

wn+p+q

p!q!
vn(−1)p+q(n + r + 1)p(n + r)qf

β−n−p
n+r+p (x)fn+r+q

m (u) yn+p tn+q. (2.9)

Now equating (2.8) and (2.9) and finally putting y = t = 1, we get

(1 + w)−m−r(1 − w)β−1exp
(

−xw

1 − w

)

G
( x

1 − w
, u(1 + w),

wv

(1 − w)(1 + w)

)

=

∞
∑

n=0

∞
∑

p=0

∞
∑

q=0

an

wn+p+q

p!q!
vn(−1)p+q(n + r + 1)p(n + r)qf

β−n−p
n+r+p (x)fn+r+q

m (u),

which is relation (1.7). This completes the proof of the theorem.

Corollary 2.1. Putting r = 0 in theorem 1.3, we get the following:
If there exists a quasibilinear generating relation [1]:

G(x, u, w) =
∞
∑

n=0

anfβ−n
n (x)fn

m(u)wn

then

(1 + w)−m(1 − w)β−1exp
(

−xw

1 − w

)

G
( x

1 − w
, u(1 + w),

wv

(1 − w)(1 + w)

)

=

∞
∑

n=0

∞
∑

p=0

∞
∑

q=0

an

wn+p+q

p!q!
vn(−1)p+q(n + 1)p(n)qf

β−n−p
n+p (x)fn+q

m (u),

which shows that the existence of a quasibilinear generating relation involving modified Laguerre
polynomial implies the existence of a more general generating relation.

We now proceed to show that theorem 1.3 is a generalization of theorem 1.2 by discussing the particular
case of theorem 1.3 when m = 0.

3. Particular Case

Putting m=0 in (1.7), we get

(1 + w)−r(1 − w)β−1exp
(

−xw

1 − w

)

G
( x

1 − w
,

wv

(1 − w)(1 + w)

)

=

∞
∑

n=0

∞
∑

p=0

an

wn+p

p!
vn(−1)p(n + r + 1)pf

β−n−p
n+r+p (x)

∞
∑

q=0

(−w)q

q!
(n + r)q

=

∞
∑

n=0

∞
∑

p=0

an

wn+p

p!
vn(−1)p(n + r + 1)pf

β−n−p
n+r+p (x)(1 + w)−n−r

=(1 + w)−r

∞
∑

n=0

∞
∑

p=0

an(−w)n+p
(

−v

1 + w

)n (n + r + 1)p

p!
f

β−n−p
n+r+p (x)

=(1 + w)−r

∞
∑

n=0

(−w)n+p

∞
∑

p=0

an

(n + r + 1)p

p!

(

−v

1 + w

)n

f
β−n−p
n+r+p (x) (3.1)

Now replacing
(

−
v

1+w

)

by v in (3.1), we get

(1 − w)β−1exp
(

−xw

1 − w

)

G
( x

1 − w
,

−wv

1 − w

)

=

∞
∑

n=0

(−w)n

n
∑

p=0

ap

(

n + r

p + r

)

vpf
β−n
n+r (x). (3.2)
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Finally, writing (w) in place (−w) in (3.2), we get

(1 + w)β−1exp
( xw

1 + w

)

G
( x

1 + w
,

wv

1 + w

)

=

∞
∑

n=0

wnσn(v)fβ−n
n+r (x),

where

σn(v) =
n
∑

p=0

ap

(

n + r

p + r

)

vp

and

G(x, w) =

∞
∑

n=0

anf
β−n
n+k (x)wn,

which is Theorem 1.2.
Thus we see that Theorem 1.3 is a further generalization of Theorem 1.2.

4. Observation

It is observed that though the Theorem 1.3 has been proved by group theoretic method, still the result
stated in Theorem 1.3 owes its existence to the following generating functions :

exp
( xt

1 + t

)

(1 + t)β−1−nf
β−n
n+r

( x

1 + t

)

=

∞
∑

p=0

(n + r + 1)p

p!
f

β−n−p
n+r+p (x) tp, (4.1)

(1 − t)−m−r−nfn+r
m

(

u(1 − t)
)

=

∞
∑

q=0

(n + r)q

q!
f (n+r+q)

m (u) tq (4.2)

as well as to the partial quasibilinear generating function assumed in Theorem 1.3.

In fact R. H. S of (1.7)

=
∞
∑

n=0

∞
∑

p=0

∞
∑

q=0

an

wn+p+q

p!q!
vn(−1)p+q(n + r + 1)p(n + r)qf

β−n−p
n+r+p (x)fn+r+q

m (u)

=
∞
∑

n=0

∞
∑

p=0

an

(−w)p

p!
(n + r + 1)pf

β−n−p
n+r+p (x)

(

∞
∑

q=0

(n + r)q

q!
f (n+r+q)

m (u) (−w)q

)

(wv)n

=(1 + w)−m−r

∞
∑

n=0

an

(

∞
∑

p=0

(n + r + 1)p

p!
f

β−n−p
n+r+p (x) (−w)p

)

fn+r
m

(

u(1 + w)
)

(

vw

1 + w

)n

(using (4.2))

=(1 + w)−m−r(1 − w)β−1exp
(

−xw

1 − w

)

∞
∑

n=0

an f
β−n
n+r

( x

1 − w

)

fn+r
m

(

u(1 + w)
)

(

vw

(1 + w)(1 − w)

)n

(using (4.1)

=(1 + w)−m−r(1 − w)β−1exp
(

−xw

1 − w

)

G
( x

1 − w
, u(1 + w),

wv

(1 − w)(1 + w)

)

=L. H. S of (1.7)
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