The Continuous Generalized Wavelet Transform Associated with q-Bessel Operator

M. M. Dixit, C. P. Pandey and D. Das

ABSTRACT: The continuous generalized wavelet transform associated with q-Bessel operator is defined, which will invariably be called continuous q-Bessel wavelet transform. Certain and boundedness results and inversion formula for continuous q-Bessel wavelet transform are obtained. Discrete q-Bessel wavelet transform is defined and a reconstruction formula is derived for discrete q-Bessel wavelet.

Key Words: q-Bessel Function, q-Bessel Fourier transform, Wavelet transform.

Contents

1 Introduction

2 The q-Bessel operator and q-Bessel function

3 q-Functional spaces

4 q-Bessel translation operator

5 q-Convolution and q-Bessel Fourier transform

6 The continuous generalized wavelet transform associated with q-Bessel operator

7 An Inversion formula

8 Discrete q-Bessel wavelet transform

1. Introduction

A complex-valued continuous function ϕ with the property

$$\int_{0}^{\infty} \phi(t) dt = 0,$$

is called a wavelet. The wavelet transform of a function $f \in L^2(\mathbb{R})$ with respect to the wavelet $\phi \in L^2(\mathbb{R})$ is defined by

$$(W_\phi)(b, a) = \int_{-\infty}^{+\infty} f(t) \overline{\phi_{b,a}(t)} dt, \ b \in \mathbb{R}, \ a > 0,$$

where

$$\phi_{b,a}(t) = a^{-1/2} \phi((t - b)/a).$$

In terms of the translation T_b defined by

$$T_b \phi(t) = \phi(t - b), \ b \in \mathbb{R}$$

and dilation D_a defined by

$$D_a \phi(t) = |a|^{-1/2} \phi(t/a), \ a \neq 0,$$

we can write

$$\phi_{b,a}(t) = T_b D_a \phi(t).$$
We can also express (1.2) as the convolution:

\[(W_\phi f)(b, a) = (f * g_{\phi, a})(b),\]

where

\[g(t) := \phi(-t).\]

(1.8)

2. The \(q\)-Bessel operator and \(q\)-Bessel function

The \(q\)-Bessel operator defined by

\[\Delta_{q,a} f (x) = \frac{1}{x^{2\alpha+1}} D_q \left[x^{2\alpha+1} D_q f \right] \left(q^{-1} x \right), \]

where

\[D_q f(x) = \frac{f(x) - f(qx)}{(1 - q)x}, \] \(x \neq 0, q \neq 1.\)

(2.2)

For \(a, q \in \mathbb{C},\) the \(q\)-shift factorial \((a; q)_k\) is defined as a product of \(k\) factors

\[(a; q)_k = (1 - a)(1 - aq) \ldots (1 - aq^{k-1}), k \in \mathbb{N}^*, (a; q)_0 = 1.\]

(2.3)

If \(|q| < 1,\) this definition remains meaningful for \(k = +\infty\) as a convergent infinite product:

\[(a; q)_{\infty} = \prod_{k=0}^{\infty} (1 - aq^k).\]

(2.4)

We also write \((a_1, \ldots, a_r; q)_k\) for the product of \(rq\)-shifted factorials:

\[(a_1, \ldots, a_r; q)_k = (a_1; q)_k \ldots (a_r; q)_k, k \in \mathbb{N} \text{ or } k = \infty.\]

(2.5)

A \(q\)-hypergeometric series is a power series (for the moment still formal) in one complex variable \(z\) with power series coefficients which depend, apart from \(q,\) on \(r\) complex upper parameters \(a_1, \ldots, a_r\) and \(s\) complex lower parameters \(b_1, \ldots, b_s\) as follows:

\[r_{\phi, s}(a_1, \ldots, a_r; b_1, \ldots, b_s; q, x) = \sum_{k=0}^{\infty} \frac{(a_1, \ldots, a_r; q)_k}{(b_1, \ldots, b_s; q)_k} \frac{(-1)^k q^{k(k-1)}}{(1 - q^2)^{1+s-r}} x^k, \text{ for } r, s \in \mathbb{N}.\]

(2.6)

The \(q\)-Bessel function is defined by

\[j_\alpha (x; q^2) = \Gamma_{q^2} (\alpha + 1) \sum_{k=0}^{\infty} \frac{(-1)^k q^{k(k-1)}}{\Gamma_{q^2} (k + 1) \Gamma_{q^2} (\alpha + k + 1)} \left(\frac{x}{1 + q} \right)^{2k}.\]

(2.7)

This function is bounded and for every \(x \in \mathbb{R}_q\) and \(\alpha > -\frac{1}{2},\) we have

\[|j_\alpha (x; q^2)| \leq \frac{1}{(q; q^2)^2},\]

(2.8)

\[\left(\frac{1}{x} D_q \right) j_\alpha (x; q^2) = -\frac{(1 - q)}{(1 - q^{2\alpha + 2})} j_{\alpha - 1} (qx; q^2),\]

(2.9)

\[\left(\frac{1}{x} D_q \right) \left(x^{2\alpha} j_\alpha (x; q^2) \right) = \frac{(1 - q^{2\alpha})}{(1 - q)} x^{2(\alpha - 1)} j_{\alpha - 1} (x; q^2),\]

(2.10)

\[|D_q j_\alpha (x; q^2)| \leq \frac{x (1 - q)}{(1 - q^{2\alpha + 2}) (q; q^2)^2}.\]

(2.11)
We remark that for $\lambda \in C$, the function $j_\alpha (\lambda x, q^2)$ is the unique solution of the q-differential system

$$\begin{cases} \Delta_{q,\alpha} U (x, q) = - \lambda^2 U (x, q) \\ U (0, q) = 1 ; D_{q,x} U (x, q) |_{x=0} = 0, \end{cases}$$

(2.12)

where $\Delta_{q,\alpha}$ is the q-Bessel operator defined by

$$\Delta_{q,\alpha} f (x) = \frac{1}{x^{2\alpha + 1}} D_{q} \left[x^{2\alpha + 1} D_{q} f \right] (q^{-1} x)$$

(2.13)

and for $k \in N$ and $\lambda \in R_q^+$

$$\Delta_{q,x}^k j_\alpha (\lambda x; q^2) = (-1)^k \lambda^{2k} j_\alpha (\lambda x; q^2).$$

(2.16)

3. q-Functional spaces

We begin by putting

$$R_q^+ = \{ + q^k, k \in Z \}, \quad \tilde R_q^+ = \{ + q^k, k \in Z \} \cup \{0\}$$

(3.1)

and we denote by $L_{p,\alpha,q} (R_{q,+})$, $p \leq [0, \infty[$, (resp. $L_{\infty,\alpha,q} (R_{q,+})$) the space of functions f such that,

$$\|f\|_{p,\alpha,q} = \left(\int_0^\infty |f (x)|^p \, dq(x) \right)^{\frac{1}{p}} < +\infty,$$

(3.2)

$$\text{resp.} \quad \|f\|_{\infty,\alpha,q} = \text{ess. sup}_{x \in R_q} |f (x)| < +\infty,$$

(3.3)

and

$$dq(x) = \frac{(1 + q)^{-\alpha}}{\Gamma q^2 (\alpha + 1)} x^{2\alpha + 1} dqx = b_{\alpha,q} x^{2\alpha + 1} dqx.$$

(3.4)

4. q-Bessel translation operator

$T_{q,x}^\alpha$, $x \in R_{q,+}$ is the q-generalized translation operator associated with the q-Bessel transform is introduced in [12], is defined as follows

$$\phi (x, y) = T_{q,x}^\alpha f (x) = \int_0^{+\infty} f (t) D_{\alpha,q} (x, y, t) \, dq\sigma (t), \quad \alpha > -1,$$

(4.1)

with

$$D_{\alpha,q} (x, y, z) = \int_0^{+\infty} j_\alpha (xt; q^2) j_\alpha (yt; q^2) j_\alpha (zt; q^2) \, dq\sigma (t)$$

(4.2)

and

$$\int_0^{+\infty} D_{\alpha,q} (x, y, z) \, dq\sigma (z) = 1.$$

(4.3)

In particular the following product formula holds

$$T_{q,x}^\alpha j_\alpha (y; q^2) = j_\alpha (x; q^2) j_\alpha (y; q^2).$$

(4.4)

It is shown in [12] that for $f \in L_{p,\alpha,q} (R_{q,+})$

$$\|T_{q,x}^\alpha f\|_{p,\alpha,q} \leq \|f\|_{p,\alpha,q},$$

(4.5)

and the map $y \to T_{q,x}^\alpha f$ is continuous from $(0, \infty)$ into $(0, \infty)$.

5. \(q\)-Convolution and \(q\)-Bessel Fourier transform

The \(q\)-Bessel Fourier transform \(F_{\alpha,q}\) and the \(q\)-Bessel convolution product are defined for suitable functions \(f, g\) as follows

\[
f_{\alpha,q}(\lambda) = \int_{0}^{\infty} f(x) j_{\alpha}(\lambda x; q^{2}) d_{q}\sigma(x), \quad (5.1)
\]

\[
f \ast_{\alpha,q} g(x) = \int_{0}^{\infty} T_{q,x}^{\alpha} f(y) g(y) d_{q}\sigma(y). \quad (5.2)
\]

It is shown in [11], that the \(q\)-Bessel Fourier transform \(F_{\alpha,q}\) satisfies the following properties:

Theorem 5.1. If \(f \in L_{\alpha,q}^{1}(\mathbb{R}_{q,+})\) then \(F_{\alpha,q}(f) \in C_{q,x,0}(\mathbb{R}_{q,+})\) and

\[
\|\hat{f}_{\alpha,q}\| \leq B_{\alpha,q} \|f\|_{1,\alpha,q}, \quad (5.3)
\]

where

\[
B_{\alpha,q} = \frac{1}{(1-q)} \frac{(-q^2; q^2)_{\infty}}{(q^2; q^2)_{\infty}}. \quad (5.4)
\]

Theorem 5.2. Given two functions \(f, g \in L_{\alpha,q}^{1}(\mathbb{R}_{q,+})\), then

\[
f \ast_{\alpha,q} g \in L_{\alpha,q}^{1}(\mathbb{R}_{q,+}) \quad (5.5)
\]

and

\[
F_{\alpha,q}(f \ast_{\alpha,q} g) = F_{\alpha,q}(f) F_{\alpha,q}(g). \quad (5.6)
\]

Theorem 5.3. (Inversion formula): If \(f \in L_{\alpha,q}^{1}(\mathbb{R}_{q,+})\) such that \(F_{\alpha,q}(f) \in L_{\alpha,q}^{1}(\mathbb{R}_{q,+})\), then for all \(x \in \mathbb{R}_{q,+}\), we have

\[
f(x) = \int_{0}^{\infty} \hat{f}_{\alpha,q}(\lambda) j_{\alpha}(xy; q^{2}) d_{q}\sigma(y) \quad (5.7)
\]

Theorem 5.4. (\(q\)-Plancherel theorem) If \(\hat{f}_{\alpha,q}\) is an isomorphism of \(L_{\alpha,q}^{2}(\mathbb{R}_{q,+})\), we have

\[
\left\|\hat{f}_{\alpha,q}(\lambda)\right\|_{2,\alpha,q} = \|f\|_{2,\alpha,q}, \text{ for } f \in L_{\alpha,q}^{2}(\mathbb{R}_{q,+}) \text{ and } F_{\alpha,q}^{-1}(f) = F_{\alpha,q}(f). \quad (5.8)
\]

Theorem 5.5. (i) For \(f \in L_{\alpha,q}^{p}(\mathbb{R}_{q,+}), p \in [1, \infty]\), \(g \in L_{\alpha,q}^{1}(\mathbb{R}_{q,+})\), we have

\[
f \ast_{\alpha,q} g \in L_{\alpha,q}^{p}(\mathbb{R}_{q,+}) \text{ and } \|f \ast_{\alpha,q} g\|_{p,\alpha,q} \leq \|f\|_{p,\alpha,q} \|g\|_{1,\alpha,q}. \quad (5.9)
\]

(ii) \(\int_{0}^{\infty} F_{\alpha,q}(f)(\xi) g(\xi) d_{q}\sigma(\xi) = \int_{0}^{\infty} f(\xi) F_{\alpha,q}(g)(\xi) d_{q}\sigma(\xi), \quad f, g \in L_{\alpha,q}^{1}(\mathbb{R}_{q,+}). \quad (5.10)
\]

(iii) \(F_{\alpha,q}(T_{q,x}^{\alpha})(\xi) = j_{\alpha}(\xi x; q^{2}) F_{\alpha,q}(f)(\xi), \quad f \in L_{\alpha,q}^{1}(\mathbb{R}_{q,+}). \quad (5.11)
\]

6. The continuous generalized wavelet transform associated with \(q\)-Bessel operator

Let \(\psi \in L_{\alpha,q}^{p}(\mathbb{R}_{q,+}), 1 \leq p < \infty\) be given. For \(b \geq 0 \text{ and } a > 0\) define the \(q\)-Bessel wavelet

\[
\psi_{b,a}^{\alpha,q}(x) := D_{\alpha} B_{\alpha}^{\alpha,q} \psi(x) = D_{\alpha} \psi(b, x) = a^{-2\alpha-2} \psi\left(a^{-1} \frac{b}{a} x\right) \quad (6.1)
\]

\[
a^{-2\alpha-2} \int_{0}^{\infty} D_{\alpha,q} \left(a^{-1} \frac{b}{a} x\right) \psi(z) d_{q}\sigma(z), \quad (6.2)
\]

the integral being convergent by virtue of (4.5).

Using the wavelet \(\psi_{b,a}^{\alpha,q}\), we now define the continuous \(q\)-Bessel wavelet transform which will send each \(L^{p}\)-function defined on the positive half line to a function \(B_{\alpha,q}(b, a)\) on the first quadrant as follows.

\[
B_{\alpha,q}(b, a) := \left(\mathcal{B}^{\alpha,q}_{\psi} f\right)(b, a) := \left\langle f(t), \psi_{b,a}^{\alpha,q}(t) \right\rangle_{\alpha,q} = \int_{0}^{\infty} f(t) \overline{\psi_{b,a}^{\alpha,q}(t)} d_{q}\sigma(t) \quad (6.3)
\]
\(\psi = a^{-2\alpha - 2} \int_0^\infty \int_0^\infty f(t) \psi(z) D_{\alpha,q} \left(\frac{b}{a}, \frac{t}{a}, z \right) d_q \sigma(z) d_q \sigma(t), \)

provided the integral is convergent; see Theorem 5.3 for existence.

Theorem 6.1. Let \(\psi \in L_{p,q}^p (R_{q,+}), \) \(1 \leq p < \infty. \) Then for \(y \geq 0, \)

(i) the map \(y \rightarrow T_y^{\alpha,q} \psi \) is continuous from \(L_{p,q}^p (R_{q,+}) \) into \(L_{p,q}^p (R_{q,+}). \)

(ii) the function \(\psi_{b,a} \) is defined almost everywhere on \([0, \infty), \) and

\[
\left\| \psi_{b,a} (x) \right\|_{p,a,q} \leq a^{(2\alpha+2)(\frac{1}{p'} - 1)} \left\| \psi \right\|_{p,a,q}.
\]

Proof. We can write, for \(\frac{1}{p} + \frac{1}{p'} = 1, \)

\[
\left| \psi(x,y) \right| = \left| T_y^{\alpha,q} \psi(x) \right| = \left| \int_0^\infty \psi(z) D_{\alpha,q}^{1/p} (x,y,z) D_{\alpha,q}^{1/p'} (x,y,z) \right| d_q \sigma(z)
\]

\[
\leq \left(\int_0^\infty \left| \psi(z) \right|^p D_{\alpha,q}^{1/p} (x,y,z) d_q \sigma(z) \right)^{1/p} \left(\int_0^\infty D_{\alpha,q}^{1/p'} (x,y,z) d_q \sigma(z) \right)^{1/p'}.
\]

Therefore, in view of the property (4.3), we have

\[
\left| \psi(x,y) \right|^p \leq \int_0^\infty \left| \psi(z) \right|^p D_{\alpha,q}^{1/p} (x,y,z) d_q \sigma(z),
\]

so that

\[
\int_0^\infty \left| \psi(x,y) \right|^p d_q \sigma(x) \leq \int_0^\infty \left| \psi(z) \right|^p d_q \sigma(z) \int_0^\infty D_{\alpha,q}^{1/p} (x,y,z) d_q \sigma(x).
\]

Thus, we get the following boundedness property of the \(q \)-Bessel translation operator

\[
\left\| \psi(x,y) \right\|_{p,a,q} \leq \left\| \psi \right\|_{p,a,q}, \quad 1 \leq p < \infty.
\]

(6.6)

Now applying the above method of proof to (6.2) we find that

\[
\left\| \psi_{b,a} (x) \right\|_{p,a,q} \leq a^{(2\alpha+2)(\frac{1}{p'} - 1)} \left\| \psi \right\|_{p,a,q}, \quad 1 \leq p < \infty.
\]

Theorem 6.2. Let \(f \in L_{p,q}^p (R_{q,+}) \) and \(\psi \in L_{p,q}^{p'} (R_{q,+}) \) with \(1 \leq p, p' < \infty \) and \(\frac{1}{p} + \frac{1}{p'} = 1, \) and \(B_{\alpha,q} (b,a) = \left(B_{\psi,q}^{\alpha,q} f \right) (b,a) \) be the continuous \(q \)-Bessel wavelet transform (6.4). Then

(i) \(B_{\alpha,q} (b,a) \) is continuous on \((0, \infty) \times (0, \infty). \)

(ii) \(\left\| B_{\alpha,q}^{\alpha,q} f \right\|_{r,a,q} \leq a^{(2\alpha+2)/r} \left\| f \right\|_{p,a,q} \left\| \psi \right\|_{p',a,q}, \quad \frac{1}{r} = \frac{1}{p} + \frac{1}{p'} - 1, \quad 1 \leq p, p', r < \infty.
\]

(iii) \(\left\| B_{\alpha,q}^{\alpha,q} f \right\|_{\infty,a,q} \leq a^{(2\alpha+2)(1/r' - 1)} \left\| f \right\|_{p,a,q} \left\| \psi \right\|_{p',a,q}, \quad \frac{1}{r'} = \frac{1}{p} + \frac{1}{p'} = 1.
\]

Proof. (i) Let \((b_0, a_0) \) be an arbitrary but fixed point in \((0, \infty) \times (0, \infty). \) Then by Holder's inequality,

\[
\left| B_{\alpha,q} (b,a) - B_{\alpha,q} (b_0,a_0) \right| \leq a^{-2\alpha - 2} \int_0^\infty \int_0^\infty \left| f(t) \psi(z) \right| D_{\alpha,q} (b/a, t/a, z) - D_{\alpha,q} (b_0/a_0, t/a_0, z) d_q \sigma(t) d_q \sigma(z)
\]

\[
\leq a^{-2\alpha - 2} \left(\int_0^\infty \int_0^\infty \left| f(t) \right|^p D_{\alpha,q} (b/a, t/a, z) - D_{\alpha,q} (b_0/a_0, t/a_0, z) d_q \sigma(t) d_q \sigma(z) \right)^{1/p}
\]

\[
\times \left(\int_0^\infty \int_0^\infty \left| \psi(z) \right|^p D_{\alpha,q} (b/a, t/a, z) - D_{\alpha,q} (b_0/a_0, t/a_0, z) d_q \sigma(t) d_q \sigma(z) \right)^{1/p'}.
\]
Therefore, by Holder’s inequality, we have
\[
\left| f(t) \psi(z) D_{\alpha,q} (b/a, t/a, z) d_q \sigma(t) d_q \sigma(z) \right| \leq 2,
\]
by dominated convergence theorem and continuity of \(D_{\alpha,q}(b/a, t/a, z) \) in the variable \(b \) and \(a \), we have
\[
\lim_{b \to b_0, a \to a_0} |B_{\alpha,q}(b, a) - B_{\alpha,q}(b_0, a_0)| = 0.
\]
This prove that \(B_{\alpha,q}(b, a) \) is continuous on \((0, \infty) \times (0, \infty)\).

\[(iii) \quad (B_{\psi}^{\alpha,q} f)(b, a) = a^{-2\alpha - 2} \int_0^\infty \int_0^\infty f(t) \psi(z) D_{\alpha,q} (b/a, t/a, z) d_q \sigma(t) d_q \sigma(z) \]
\[
= a^{-2\alpha - 2} \int_0^\infty \int_0^\infty f(t) \psi(z) D_{\alpha,q}^{1/p} (b/a, t/a, z) D_{\alpha,q}^{1/p'} (b/a, t/a, z) d_q \sigma(t) d_q \sigma(z).
\]

Therefore, by Holder’s inequality, we have
\[
\left| (B_{\psi}^{\alpha,q} f)(b, a) \right| \leq a^{-2\alpha - 2} \left(\int_0^\infty \int_0^\infty |f(t)|^p D_{\alpha,q} (b/a, t/a, z) d_q \sigma(t) d_q \sigma(z) \right)^{1/p} \times \left(\int_0^\infty \int_0^\infty |\psi(z)|^{p'} D_{\alpha,q} (b/a, t/a, z) d_q \sigma(t) d_q \sigma(z) \right)^{1/p'} \leq a^{-2\alpha - 2} \left(\int_0^\infty |f(t)|^p d_q \sigma(t) \int_0^\infty D_{\alpha,q} (b/a, t/a, z) d_q \sigma(z) \right)^{1/p} \times \left(\int_0^\infty |\psi(z)|^{p'} d_q \sigma(z) \int_0^\infty D_{\alpha,q} (b/a, t/a, z) d_q \sigma(t) \right)^{1/p'} \leq a^{(2\alpha + 2)/(1/p' - 1)} \left(\int_0^\infty |f(t)|^p d_q \sigma(t) \right)^{1/p} \left(\int_0^\infty |\psi(z)|^{p'} d_q \sigma(z) \right)^{1/p'}.
\]
Thus
\[
\left| (B_{\psi}^{\alpha,q} f)(b, a) \right| \leq a^{(2\alpha + 2)/(1/p' - 1)} \|f\|_{p,\alpha,q} \|\psi\|_{p',\alpha,q}.
\]

This proves (iii).
The inequality (ii) follows from Theorem (5.3).

7. An Inversion formula

Theorem 7.1. Let \(\psi \in L^2_{\alpha,q}(\mathbb{R}_+,\mathbb{C}) \) be a basic wavelet which defines the continuous \(q \)-Bessel wavelet transform (6.4). Then, for
\[
C_{\alpha,q}^{\psi} = \int_0^\infty \omega^{-2\alpha - 2} |\hat{\psi}(\omega)|^2 d_q \sigma(\omega) > 0,
\]
\[
\int_0^\infty \int_0^\infty (B_{\psi}^{\alpha,q} f)(b, a) (B_{\psi}^{\alpha,q} g)(b, a) a^{-2\alpha - 2} d_q \sigma(a) d_q \sigma(b) = C_{\alpha,q}^{\psi} \langle f, g \rangle_{\alpha,q}, \quad \forall f, g \in L^2_{\alpha,q}(\mathbb{R}_+,\mathbb{C}).
\]
Proof. Using the representation (6.4) we have

\[
\left(B_{\alpha,q}^{\psi} f\right)(b,a) = a^{-2\alpha-2} \int_0^\infty \int_0^\infty f(t) \overline{\psi(z)} D_{\alpha,q} \left(\frac{b \cdot t}{a \cdot z}, \frac{b \cdot \xi}{a \cdot q^2} \right) d_q \sigma(z) d_q \sigma(t)
\]

\[
= a^{-2\alpha-2} \int_0^\infty \int_0^\infty f(t) \overline{\psi(z)} j_\alpha \left(\frac{b \cdot t}{a \cdot q^2} \right) j_\alpha \left(\frac{b \cdot \xi}{a \cdot q^2} \right) d_q \sigma(z) d_q \sigma(t)
\]

\[
= a^{-2\alpha-2} \int_0^\infty \int_0^\infty \hat{f}_{\alpha,q} \left(\frac{t}{a} \right) \overline{\psi_{\alpha,q}(z)} j_\alpha \left(\frac{b \cdot \xi}{a \cdot q^2} \right) d_q \sigma(z) \ d_q \sigma(t)
\]

\[
= \int_0^\infty \hat{f}(\xi) \overline{\psi_{\alpha,q}(a\xi)} \ d_q \sigma(\xi)
\]

Now multiplying by \(a^{-2\alpha-2} d_q \sigma(a)\) and integrating, we get

\[
\int_0^\infty \int_0^\infty \left(B_{\psi}^{\alpha,q} f \right)(b,a) \overline{ \left(B_{\psi}^{\alpha,q} g \right)(b,a) } \ d_q \sigma(b) = \int_0^\infty \int_0^\infty \hat{f}_{\alpha,q}(\xi) \overline{\psi_{\alpha,q}(a\xi)} \ d_q \sigma(\xi) \ \overline{ \hat{g}_{\alpha,q}(\xi) \overline{\psi_{\alpha,q}(a\xi)} } \ d_q \sigma(\xi)
\]

\[
= \int_0^\infty \hat{f}_{\alpha,q}(\xi) \overline{\psi_{\alpha,q}(a\xi)} \ d_q \sigma(\xi) \ int_0^\infty \overline{\psi_{\alpha,q}(a\xi)} \ d_q \sigma(a)
\]

\[
= \int_0^\infty \overline{\hat{f}_{\alpha,q}(\xi) g_{\alpha,q}(\xi)} \ d_q \sigma(\xi) \ \overline{ \int_0^\infty \hat{\psi}_{\alpha,q}(a\xi) \ d_q \sigma(a) } \ d_q \sigma(\xi)
\]

\[
= C_{\alpha,q}^{\psi} \left(f, g \right)_{\alpha,q}
\]

8. Discrete \(q\)-Bessel wavelet transform

In this section we assume that \(\psi \in L^2_{\alpha,q}(\mathbb{R}_{q,+})\) satisfies the so called stability condition

\[
P \leq \sum_{m=-\infty}^{\infty} \left| \hat{\psi}(2^{-m}\xi) \right|^2 \leq Q \text{ a.e.}
\]

(8.1)

for certain positive constants \(P\) and \(Q\), \(0 < P \leq Q < \infty\). Here \(\hat{\psi}\) denotes the \(q\)-Bessel Fourier transform of \(\psi\). The \(\psi \in L^2_{\alpha,q}(\mathbb{R}_{q,+})\) satisfying (8.1) is called dyadic wavelet.

We define the semi-discrete \(q\)-Bessel wavelet transform by

\[
\left(B_{m,q}^{\alpha,q} \psi f \right)(b) := (2^m)^{2\alpha+2} \left(B_{\psi}^{\alpha,q} f \right) \left(b, \frac{1}{2^m} \right)
\]

(8.2)
ψ defined by (8.3). Let us define another wavelet \(\psi \in L^2 M. M. Dixit, C. P. P andey and D. Das \) for the some constants of points only variable \(a \). Now, we discretise the translation parameter \(b \) also by restricting it to the discrete set

\[
\text{Theorem 8.1. Assume that the semi-discrete } q\text{-Bessel wavelet transform of any } f \in L^2_{\alpha, q} (R_+, q) \text{ is defined by (8.3). Let us define another wavelet } \psi^* \text{ by means of its } q\text{-Bessel Fourier transform:}
\]

\[
\hat{\psi}^*_{\alpha, q} (\xi) = \frac{\hat{\psi}_{\alpha, q} (\xi)}{\sum_{k=-\infty}^{\infty} |\hat{\psi}_{\alpha, q} (2^{-k}\xi)|^2}.
\]

then

\[
f (t) = \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} (B^0_{m, q} f (b) \left(\hat{\psi}^*_{\alpha, q} (2^{-m}\xi) j_\alpha (tu; q^2) \right) \hat{\psi}_{\alpha, q} (2^{-m}\eta) j_\alpha (t\xi; q^2)) \hat{\psi}_{\alpha, q} (b) d_\eta d_\sigma (b).
\]

\[
\text{Proof. In view of (8.1) and (8.3), for any } f \in L^2_{\alpha, q} (R_+, q), \text{ we have}
\]

\[
\sum_{m=-\infty}^{\infty} \int_{0}^{\infty} (B^0_{m, q} f (b) \left(\hat{\psi}^*_{\alpha, q} (2^{-m}\xi) j_\alpha (tu; q^2) \right) \hat{\psi}_{\alpha, q} (2^{-m}\eta) j_\alpha (t\xi; q^2)) \hat{\psi}_{\alpha, q} (b) d_\eta d_\sigma (b)
\]

\[
= \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} (B^0_{m, q} f (b) \left(\hat{\psi}^*_{\alpha, q} (2^{-m}\eta) j_\alpha (tu; q^2) \right) \hat{\psi}_{\alpha, q} (2^{-m}\eta) j_\alpha (t\eta; q^2)) \hat{\psi}_{\alpha, q} (b) d_\eta d_\sigma (b)
\]

\[
= \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} \left(\hat{f}_{\alpha, q} (\eta) \left(\hat{\psi}^*_{\alpha, q} (2^{-m}\eta) \right) \hat{\psi}_{\alpha, q} (2^{-m}\eta) j_\alpha (t\eta; q^2) \right) \hat{\psi}_{\alpha, q} (b) d_\eta d_\sigma (b)
\]

\[
= \int_{0}^{\infty} \hat{f}_{\alpha, q} (\eta) j_\alpha (t\eta; q^2) d_\eta d_\sigma (b)
\]

\[
f (t).
\]

The above theorem leads to the following definition of dyadic dual.

\[
\text{Definition 8.2. A function } \tilde{\psi} \in L^2_{\alpha, q} (R_+, q) \text{ is called a dyadic dual of a dyadic wavelet } \psi \text{ if every } f \in L^2_{\alpha, q} (R_+, q) \text{ can be expressed as}
\]

\[
f (t) = \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} (B^0_{m, q} f (b) \left(\hat{\psi} (2^{-m}\xi) j_\alpha (t\xi; q^2) \hat{\psi}_{\alpha, q} (b) \right) \hat{\psi}_{\alpha, q} (2^{-m}\eta) j_\alpha (t\eta; q^2)) \hat{\psi}_{\alpha, q} (b) d_\eta d_\sigma (b).
\]

\[
\text{So far we have considered semi-discrete Bessel wavelet transform of any } f \in L^2_{\alpha, q} (R_+, q) \text{ discretising only variable } a. \text{ Now, we discretise the translation parameter } b \text{ also by restricting it to the discrete set of points}
\]

\[
b_{m,n} := \frac{n}{2^m} b_0, \text{ } m \in Z, \text{ } n \in N_0.
\]
where \(b_0 > 0 \) is a fixed constant.

We write
\[
\psi_{b_0;m,n}^{\alpha,q}(t) = 2^{m(2\alpha+2)} \psi_{\alpha,q}(nb_0,2^mt).
\]

Then the discrete Bessel wavelet transform of any \(f \in L^2_{\alpha,q}(\mathbb{R}^+) \) can be written as
\[
\left(B^{\psi\alpha,q}f \right)(b_m,n,a_m) = \left\langle f, \psi_{b_0;m,n}^{\alpha,q} \right\rangle_{\alpha,q}, \quad m \in \mathbb{Z}, \; n \in \mathbb{N}_0.
\]

The stability condition for this reconstruction takes the form
\[
P \| f \|_{2,\alpha,q}^2 \leq \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{N}_0} \left| \left\langle f, \psi_{b_0;m,n}^{\alpha,q} \right\rangle_{\alpha,q} \right|^2 \leq Q \| f \|_{2,\alpha,q}^2, \; f \in L^2_{\alpha,q}(\mathbb{R}^+),
\]
for certain positive constants \(P \) and \(Q \) satisfying \(0 < P \leq Q < \infty \).

Theorem 8.3. Assume that the discrete \(q \)-Bessel wavelet transform of any \(f \in L^2_{\alpha,q}(\mathbb{R}^+) \) is defined by (8.12) holds. Let \(T \) be a linear operator on \(L^2_{\alpha,q}(\mathbb{R}^+) \) defined by
\[
Tf = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{N}_0} \left\langle f, \psi_{b_0;m,n}^{\alpha,q} \right\rangle_{\alpha,q} \psi_{b_0;m,n}^{\alpha,q},
\]
then
\[
f = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{N}_0} \left\langle f, \psi_{b_0;m,n}^{\alpha,q} \right\rangle_{\alpha,q} \psi_{b_0;m,n}^{\alpha,q},
\]
where
\[
\psi_{\alpha,q,b_0}^{m,n} = T^{-1} \psi_{b_0;m,n}^{\alpha,q}, \; m \in \mathbb{Z}.
\]

Proof. From the stability condition (8.12) it follows that defined by (8.13) is a one-one bounded linear operator.

Set
\[
g = Tf, \; f \in L^2_{\alpha,q}(\mathbb{R}^+).
\]

Then we have
\[
\langle Tf, f \rangle_{\alpha,q} = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{N}_0} \left| \left\langle f, \psi_{b_0;m,n}^{\alpha,q} \right\rangle_{\alpha,q} \right|^2.
\]

Therefore,
\[
P \| T^{-1}g \|_{2,\alpha,q}^2 = P \| f \|_{2,\alpha,q}^2 \langle Tf, f \rangle_{\alpha,q}
= \langle g, T^{-1}g \rangle_{\alpha,q}
\leq \| g \|_{2,\alpha,q} \| T^{-1}g \|_{2,\alpha,q},
\]
so that
\[
\| T^{-1}g \|_{\alpha,q} \leq \frac{1}{P} \| g \|_{2,\alpha,q}.
\]

Hence, every \(f \in L^2_{\alpha,q}(\mathbb{R}^+) \) can be reconstructed from its discrete \(q \)-Bessel wavelet transform values given by (8.11).

Thus
\[
f = T^{-1}Tf = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{N}_0} \left\langle f, \psi_{b_0;m,n}^{\alpha,q} \right\rangle_{\alpha,q} T^{-1} \psi_{b_0;m,n}^{\alpha,q}.
\]
Finally, set

\[\psi_{m,n}^{\alpha,q,b_0} = T^{-1} \psi_{b_0;m,n}^{\alpha,q}, \quad m \in \mathbb{Z}, \quad n \in \mathbb{N}_0. \]

(8.20)

Then the reconstruction formula (8.19) can be expressed as follows:

\[f = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{N}_0} \left\langle f, \psi_{b_0;m,n}^{\alpha,q} \right\rangle_{\alpha,q} \psi_{m,n}^{\alpha,q,b_0}. \]

□

References