On the Sum of the Powers of A_α Eigenvalues of Graphs and A_α-energy Like Invariant

S. Pirzada, Bilal A. Rather, Rezwan Ul Shaban, T. A. Chishti

ABSTRACT: For a connected simple graph G with A_α eigenvalues $\rho_1 \geq \rho_2 \geq \cdots \geq \rho_n$ and a real number β, let $S_\beta^\alpha(G) = \sum_{i=1}^n \rho_i^\beta$ be the sum of the β^{th} powers of the A_α eigenvalues of graph G. In this paper, we obtain various bounds for the graph invariant $S_\beta^\alpha(G)$ in terms of different graph parameters. As a consequence, we obtain the bounds for the quantity $I E^{A_\alpha}(G) = S_{\frac{1}{2}}^\alpha(G)$, the A_α energy-like invariant of the graph G.

Key Words: Adjacency matrix, A_α matrix, Degree regular graph, Signless Laplacian Matrix.

Contents

1 Introduction 1

2 Bounds for $S_\beta^\alpha(G)$ 3

3 Bounds for $I E^{A_\alpha}$ energy-like invariant 9

1. Introduction

Let $G(V, E)$ be a simple graph with n vertices and m edges and having vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set $E(G) = \{e_1, e_2, \ldots, e_m\}$. This is referred as (n, m) graph. The set of vertices adjacent to $v \in V(G)$, denoted by $N(v)$, is the neighborhood of v. The degree of v, denoted by $d_G(v)$ (we simply write d_v if it is clear from the context) is the cardinality of $N(v)$. A graph is called regular if each of its vertices have the same degree. The adjacency matrix $A = (a_{ij})$ of G is a $(0, 1)$-square matrix of order n whose (i,j)-entry is equal to 1, if v_i is adjacent to v_j and equal to 0, otherwise. Let $D(G) = \text{diag}(d_1, d_2, \ldots, d_n)$ be the diagonal matrix of vertex degrees $d_i = d_G(v_i), i = 1, 2, \ldots, n$ of graph G. The matrices $L(G) = A(G) - D(G)$ and $Q(G) = A(G) + D(G)$ are called the Laplacian and the signless Laplacian matrix, respectively. It is well known that both $L(G)$ and $Q(G)$ are positive semidefinite matrices having real eigenvalues so that their eigenvalues can be ordered as $\mu_1(G) \geq \mu_2(G) \geq \cdots \geq \mu_n(G) = 0$ and $q_1(G) \geq q_2(G) \geq \cdots \geq q_n(G)$, respectively.

Nikiforov [10] proposed to study the convex combinations $A_\alpha(G)$ of $A(G)$ and $D(G)$ defined by $A_\alpha(G) = \alpha D(G) + (1 - \alpha) A(G), 0 \leq \alpha \leq 1$. It is obvious that $A(G) = A_0(G)$, $D(G) = A_1(G)$ and $2A_{\frac{1}{2}}(G) = D(G) + A(G) = Q(G)$. We further note that $A_\alpha - A_\gamma = (\alpha - \gamma)(D(G) - A(G)) = (\alpha - \gamma)L(G)$. As $A_\alpha(G)$ is a symmetric matrix, for $\alpha \in [\frac{1}{2}, 1]$, clearly $A_\alpha(G)$ is positive semidefinite and so the A_α eigenvalues of G can be taken as $\rho_1(G) \geq \rho_2(G) \geq \cdots \geq \rho_n(G)$. In this setup, the matrices $A(G), Q(G)$ and $D(G)$ were seen in a new light and very interesting results were deduced in [3,10,11,14,17].

For a real number β ($\beta \neq 0, 1$), Zhou [18] considered the graph invariant $s_\beta(G)$, the sum of β^{th} powers of the Laplacian eigenvalues of G. In particular, for $\beta = \frac{1}{2}$, $s_{\frac{1}{2}}(G) = \sum_{i=1}^n \sqrt{\mu_i} = LEL(G)$, known as Laplacian-energy-like invariant, was investigated in [9]. Similarly for $\beta = -1$, we have $ns_{-1}(G) = \sum_{i=1}^n \frac{1}{\mu_i} = Kf(G)$, called the Kirchhoff index [4] of the graph G. We note that the cases $\beta = 0, 1$ are trivial as $s_0(G) = n - 1$ and $s_1(G) = Tr(L(G)) = 2m$, where Tr is the trace of the matrix. More about LEL(G) and $Kf(G)$ can be found in [13] and the references therein.

* The research of S. Pirzada is supported by SERB-DST, New Delhi under the research project number MTR/2017/000084.

2010 Mathematics Subject Classification: 05C12, 05C50, 15A18.

Submitted February 27, 2020. Published June 27, 2020

Typeset by \LaTeX style.

© Soc. Paran. de Mat.
Akbari et al. [1] introduced the sum of the β^{th} powers of the signless Laplacian eigenvalues of G as $s^+_\beta(G) = \sum_{i=1}^{n} q_i^\beta$. Again for $\beta = 0, 1$, we have $s^+_0(G) = n$ and $s^+_1(G) = 2m$. Likewise for $\beta = \frac{1}{2}$, we have $s^+_\frac{1}{2}(G) = \sum_{i=1}^{n} \sqrt{q_i} = IE(G)$, known as incidence energy of the graph G.

Motivating the definitions of $s_\beta(G)$ and $s^+_\beta(G)$, we put forward $S^\alpha_\beta(G) = \sum_{i=1}^{n} \rho_i^\beta$, for the sum of the β^{th} powers of the A_α eigenvalues of the graph G. If $\beta = 0$, we get $S^\alpha_0(G) = n$ and for $\beta = 1$, we have $S^\alpha_1(G) = Tr(A_\alpha(G)) = 2am$. To avoid trivialities, we assume $\beta \neq 0, 1$. In particular for $\beta = \frac{1}{2}$, we obtain $S^\alpha_\frac{1}{2}(G) = \sum_{i=1}^{n} \sqrt{\rho_i} = IE^{A_\alpha}(G)$. This quantity is similar to $LEL(G)$ and $IE(G)$ and is called A_α-energy-like invariant.

The first general Zagreb index [7] (also called the general zeroth-order Randić index) of a graph G is denoted by $Z_a(G)$ and is defined as $Z_a(G) = \sum_{i=1}^{n} d_i^a$, where a is any real number other than 0 and 1.

Also, for $a = 2$, we have $Z_2(G) = \sum_{i=1}^{n} d_i^2 = M_1(G)$, which is known as the first Zagreb index [5] of G. For concepts and notations not defined here, we refer the reader to any standard text, such as [2,6,15].

The following inequalities play an important role in Sections 2 and 3.

Lemma 1.1 (Power mean inequality). If $q > p > 0$, and x_1, x_2, \ldots, x_n are non negative real numbers, then

$$
\left(\frac{x_1^p + x_2^p + \cdots + x_n^p}{n} \right)^\frac{1}{p} \geq \left(\frac{x_1^q + x_2^q + \cdots + x_n^q}{n} \right)^\frac{1}{q},
$$

with equality if and only if $x_1 = x_2 = \cdots = x_n$.

Lemma 1.2 (Jensen’s inequality). Let f be a convex function on an interval \mathcal{I} and let x_1, x_2, \ldots, x_n be points of \mathcal{I} and let a_1, a_2, \ldots, a_n be real numbers satisfying $\sum_{k=1}^{n} a_k = 1$. Then

$$
f \left(\sum_{k=1}^{n} a_k x_k \right) \leq \sum_{k=1}^{n} a_k f(x_k)
$$

with equality if and only if $x_1 = x_2 = \cdots = x_n$.

The following lemmas will be used in the sequel.

Lemma 1.3. [10,14] Let G be a connected graph of order n and size m having vertex degree sequence $\{d_1, d_2, \ldots, d_n\}$. Then

1. $\sum_{i=1}^{n} \rho_i = 2am$.
2. \(\sum_{i=1}^{n} \rho_i^2 = \alpha^2 Z_2(G) + (1 - \alpha)^2 2m\).
3. \(\sum_{i=1}^{n} s_i^2 = \alpha^2 Z_2(G) + (1 - \alpha)^2 2m - \frac{4\alpha m^2}{n}\).
4. $\rho(G) \geq \frac{2m}{n}$, equality holds if and only if G is degree regular graph.
5. $\rho(G) \geq \sqrt{\frac{Z_2(G)}{n}}$, equality holds if and only if G is degree regular graph.

Lemma 1.4. [10] Let G be a connected graph of order n with diameter D. If A_α has exactly t distinct eigenvalues, then $D + 1 \leq t$.

Lemma 1.5. [10] Let G be a connected graph of order n with $\alpha \in \left[\frac{1}{2}, 1\right]$. Then A_α is a positive semidefinite matrix. If G has no isolated vertices then A_α is positive definite.
From Lemma 1.5, for \(\alpha \in \left[\frac{1}{2}, 1 \right] \), we see that \(A_{\alpha} \) is a positive semidefinite matrix, so that \(\rho_i(G) \geq 0 \) for \(i = 1, 2, \ldots, n \). From now onwards, we assume that \(\alpha \in \left[\frac{1}{2}, 1 \right] \) unless otherwise stated.

Lemma 1.6. [14] Let \(G \) be a connected graph of order \(n \) and size \(m \), where \(m \geq n \) and let \(G' = G - e \) be a connected graph obtained from \(G \) by deleting an edge. Then \(\rho_i(A_{\alpha}(G)) \geq \rho_i(A_{\alpha}(G')) \) holds for all \(1 \leq i \leq n \).

Lemma 1.7. [10] The \(A_{\alpha} \) eigenvalues of the complete graph \(K_n \) are \(\{n - 1, (\alpha n - 1)^{\lfloor n - 1 \rfloor} \} \), where \(\lfloor j \rfloor \) means the multiplicity of \(\lambda \).

Lemma 1.8. [14] Let \(G \) be a connected graph of order \(n \) having vertex degree sequence \([d_1, d_2, \ldots, d_n] \). Then \(\rho(G) \geq \sqrt{\frac{Z_2(G)}{n}} \geq \frac{2m}{n} \), with equalities if and only if \(G \) is degree regular.

Lemma 1.9. [10] Let \(G \) be a graph with maximum degree \(\Delta(G) = \Delta \). Then
\[
\rho(G) \geq \frac{1}{2} \left(\alpha(\Delta + 1) + \sqrt{\alpha^2(\Delta + 1)^2 + 4 \Delta (1 - 2\alpha)} \right).
\]
If \(\alpha \in [0, 1) \) and \(G \) is a connected graph, equality holds if and only if \(G \cong K_{1, \Delta} \).

In Section 2, we obtain upper and lower bounds for \(S_{\beta}^\beta(G) \) in terms of different parameters related to graphs like maximum degree, number of edges, trace of \(A_{\alpha} \), clique number, independence number and other parameters. In Section 3, we obtain bounds for \(IE^{A_{\alpha}}(G) \).

2. Bounds for \(S_{\beta}^\beta(G) \)

Let \(G \) be a connected \((n, m)\) graph with \(A_{\alpha} \) eigenvalues \(\rho_1(G) \geq \rho_2(G) \geq \cdots \geq \rho_n(G) \). For brevity, we use \(\rho_i \) instead of \(\rho_i(G) \). For \(1 \leq k \leq n - 1 \), let \(M_k = \sum_{i=1}^{k} \rho_i \) and \(m_k = \sum_{i=k+1}^{n} \rho_i \). If \(G \) is connected without isolated vertices and \(\alpha \in \left[\frac{1}{2}, 1 \right] \), then \(M_k \geq \alpha \sum_{i=1}^{k} 1 = \alpha k \), for \(1 \leq k \leq n - 1 \), which is a consequence of Schur’s theorem stating that the spectrum of any positive definite symmetric matrix majorizes its main diagonal. This can be further improved as follows:

\[
\frac{M_k}{k} = \frac{\sum_{i=1}^{k} \rho_i}{k} \geq \frac{\sum_{i=k+1}^{n} \rho_i}{n - k} = \frac{2\alpha m - M_k}{n - k}, \quad (2.1)
\]

which after simplification gives \(M_k \geq \frac{2\alpha m k}{n} \). It can be easily verified that equality holds if and only if \(G \cong K_n \). Similarly, we can show that \(m_k \leq \frac{2\alpha m k}{n} \) with equality if and only if \(G \cong K_n \).

Now, we have the following observation.

Lemma 2.1. If \(G \) be a connected \((n, m)\) graph having \(m \geq n \) edges, then \(\rho_2(G) = \rho_3(G) = \cdots = \rho_n(G) \) if and only if \(G \cong K_n \).

Proof. Suppose \(\rho_2 = \rho_3 = \cdots = \rho_n \). Then \(t = 2 \) and from Lemma 1.4, \(D = 1 \). Conversely, if \(G \cong K_n \). Then \(\rho_2 = \rho_3 = \cdots = \rho_n \) and the result follows.

Lemma 2.2. Let \(G \) be a connected \((n, m)\) graph with \(m \geq n \) edges. Then
\[
M_k \geq \frac{2\alpha m k + \{k(n - k)|n(\alpha^2 Z_2(G) + 2m(1 - \alpha)^2) - (2\alpha m)^2]\}^{\frac{1}{2}}
\]
with equality if and only if \(G \cong K_n \).
Proof. Using Cauchy-Schwartz’s inequality and Lemma 1.3, we have

\[(2am - M_k)^2 = \left(\sum_{i=k+1}^{n} \rho_i \right)^2 \leq (n-k) \left(\sum_{i=k+1}^{n} \rho_i^2 \right) = (n-k) \left(\sum_{i=1}^{n} \rho_i^2 - \sum_{i=1}^{k} \rho_i^2 \right)\]

\[= (n-k) \left(\alpha^2 Z_2(G) + (1-\alpha)^2 2m - \sum_{i=1}^{k} \rho_i^2 \right)\]

\[\leq (n-k) \left(\alpha^2 Z_2(G) + (1-\alpha)^2 2m - \frac{M_k^2}{k} \right).\]

After making simplifications, we obtain

\[nM_k^2 - 4amkM_k + 4\alpha^2 m^2 - k(n-k)(\alpha^2 Z_2(G) + 2m(1-\alpha)^2) \leq 0.\]

Hence, it follows that

\[M_k \leq \frac{2amk + \sqrt{k(n-k)|n(\alpha^2 Z_2(G) + 2m(1-\alpha)^2) - 4\alpha^2 m^2|}}{n}\]

which is inequality (2.2).

Assume that equality holds in (2.2). Then all above inequalities must be equalities. So \(\rho_1 = \rho_2 = \cdots = \rho_k\) and \(\rho_{k+1} = \rho_{k+2} = \cdots = \rho_n\), that is, \(G\) has exactly two distinct \(A_\alpha\) eigenvalues. So, by Equation (2.1), \(G \cong K_n\). Similarly it is easy to check equality other way round. \(\square\)

Inequality (2.2) can also be written in terms of the trace of the matrix as

\[M_k \leq \frac{kTr(A_\alpha) + \sqrt{k(n-k)|n(\alpha^2 Z_2(G) + (1-\alpha)^2 Tr(A^2)) - (Tr(A^2))^2|}}{n}.\]

If we proceed similar to Lemma 2.2, we have

\[m_k \geq \frac{2amk + \left\{ k(n-k)|n(\alpha^2 Z_2(G) + 2m(1-\alpha)^2) - (2am)^2| \right\}^{\frac{1}{2}}}{n}\]

with equality if and only if \(G \cong K_n\).

If \(\rho_1\) and \(\rho_n\) are respectively the largest and the smallest \(A_\alpha\) eigenvalues, for \(k = 1\), then Lemmas 2.2 and 2.3 imply that

\[\rho_1 \leq \frac{2am + \left\{ (n-1)|n(\alpha^2 Z_2(G) + 2m(1-\alpha)^2) - (2am)^2| \right\}^{\frac{1}{2}}}{n}\]

and

\[\rho_n \geq \frac{2am + \left\{ (n-1)|n(\alpha^2 Z_2(G) + 2m(1-\alpha)^2) - (2am)^2| \right\}^{\frac{1}{2}}}{n}\]

If \(G - e\) is the graph obtained from \(G\) by deleting the edge \(e\), using Lemma (1.6) and the fact that if \(a \leq b\), then \(a^l \leq b^l\) for each \(l > 0\) and \(a^l \geq b^l\) for each \(l < 0\), we get

\[S_{\beta}^n(G) \geq S_{\beta}^n(G - e), \quad \text{if } \beta > 0\]

\[S_{\beta}^n(G) \leq S_{\beta}^n(G - e), \quad \text{if } \beta < 0.\] (2.4)

As \(G\) is a spanning subgraph of \(K_n\), using (3.4) and Lemma (1.7), we have

\[S_{\beta}^n(G) \leq (n-1)^\beta + (n-1)(an-1)^\beta, \quad \text{if } \beta > 0\]

\[S_{\beta}^n(G) \geq (n-1)^\beta + (n-1)(an-1)^\beta, \quad \text{if } \beta < 0,\]

with equality occurring in both cases if and only if \(G \cong K_n\).
If G is a connected bipartite graph of order n with partite sets of cardinality a and b, then G is the spanning subgraph of the complete bipartite graph $K_{a,b}$. For $n \geq 2$ and $m \geq n$, we have

$$S_\beta^\alpha(G) \leq x_1^\beta + x_2^\beta + (b-1)(aa)^\beta + (a-1)(ab)^\beta, \quad \text{if } \beta > 0$$

$$S_\beta^\alpha(G) \geq x_1^\beta + x_2^\beta + (b-1)(aa)^\beta + (a-1)(ab)^\beta, \quad \text{if } \beta < 0,$$

where $x_1 = \frac{1}{2}(an + \sqrt{(an)^2 + 4ab(1-2\alpha)})$ and $x_2 = \frac{1}{2}(an - \sqrt{(an)^2 + 4ab(1-2\alpha)})$, equality occurring in both cases if and only if $G \cong K_{a,b}$.

A complete split graph, denoted by $CS_{n-k,k}$, is the graph consisting of an independent set on k vertices and a clique on $n-k$ vertices, such that each vertex of the clique is connected to every vertex of the independent set. It is well known that $CS_{n-k,k} = K_{n-k} \vee K_k$. Using this information in Proposition 37 of [10], we can find A_α spectrum of $CS_{n-k,k}$.

For $\alpha \in [0,1]$, the eigenvalues of $A_\alpha(CS_{n-k,k})$ are

$$\left\{ \frac{n-k-1+\alpha n \pm \sqrt{\theta}}{2}, \(\alpha(n-k)\)_{[k-1]}^{[\alpha n-\alpha+1]} \right\},$$

where $\theta = k^2(4\alpha - 3) + k(2n + 2 - 2an - 4\alpha) + n(\alpha - 1)(n\alpha - \alpha + 2) + 1$.

In case G is a connected graph on $n \geq 2$ vertices having independence number k, then

$$S_\beta^\alpha(G) \leq x_1^\beta + x_2^\beta + (k-1)(an - b\alpha)^\beta + (n-k-1)(an - 1)^\beta, \quad \text{if } \beta > 0$$

$$S_\beta^\alpha(G) \geq x_1^\beta + x_2^\beta + (k-1)(an - b\alpha)^\beta + (n-k-1)(an - 1)^\beta, \quad \text{if } \beta < 0,$$

where

$$x_1 = \frac{1}{2} \left[n-k-1 + an + \left\{ k^2(4\alpha - 3) + k(2n + 2 - 2an - 4\alpha) + n(\alpha - 1)(n\alpha - \alpha + 2) + 1 \right\}^{\frac{1}{2}} \right]$$

and

$$x_2 = \frac{1}{2} \left[n-k-1 + an - \left\{ k^2(4\alpha - 3) + k(2n + 2 - 2an - 4\alpha) + n(\alpha - 1)(n\alpha - \alpha + 2) + 1 \right\}^{\frac{1}{2}} \right],$$

equality occurring in both cases if and only if $G \cong CS_{n-k,k}$.

Further, if G is a degree regular graph on $n \geq 3$ vertices, then

$$S_\beta^\alpha(C_n) \leq S_\beta^\alpha(G) \leq (n-1)^\beta + (n-1)(an - 1)^\beta, \quad \text{if } \beta > 0$$

$$S_\beta^\alpha(C_n) \geq S_\beta^\alpha(G) \geq (n-1)^\beta + (n-1)(an - 1)^\beta, \quad \text{if } \beta < 0,$$

equality holds on the right if and only if $G \cong K_n$ and equality occurs on the left if and only if $G \cong C_n$.

Theorem 2.3. Let G be a connected graph of order $n \geq 2$.

(i) If $\beta < 0$ or $\beta > 1$, then

$$S_\beta^\alpha(G) \geq \left(\frac{2m}{n} \right)^\beta + \frac{(2m(an-1))^{\beta}}{n^\beta(an-1)^{\beta-1}},$$

with equality if and only if $G \cong K_n$.

(ii) If $0 < \beta < 1$, then

$$S_\beta^\alpha(G) \leq \left(\frac{2m}{n} \right)^\beta + \frac{(2m(an-1))^{\beta}}{n^\beta(an-1)^{\beta-1}},$$

with equality if and only if $G \cong K_n$.

Proof. For $\beta \neq 0,1$ and $x > 0$, we see that x^β is concave up when $\beta < 0$ or $\beta > 1$. Thus, by Jensen’s inequality, we have

$$\left(\sum_{i=2}^{n} \frac{1}{n-1} \rho_i \right)^\beta \leq \sum_{i=2}^{n} \frac{1}{n-1} \rho_i^\beta,$$
which implies that \(\sum_{i=2}^{n} \rho_i^\beta \geq \frac{1}{(n-1)^\beta} \left(\sum_{i=2}^{n} \rho_i \right)^\beta \) with equality if and only if \(\rho_2 = \rho_3 = \cdots = \rho_n \). Now, using this observation in the definition of \(S^\beta_\beta(G) \), we have

\[
S^\beta_\beta(G) \geq \rho_1^\beta + \frac{1}{(n-1)^\beta} \left(\sum_{i=2}^{n} \rho_i \right)^\beta = \rho_1^\beta + \frac{(2\alpha m - \rho_1^\beta)}{(n-1)^\beta-1}.
\]

Let \(f(x) = x^\beta + \frac{(2\alpha m - x^\beta)}{(n-1)^\beta-1} \). By solving \(f'(x) \geq 0 \), we see that \(f(x) \) is increasing for \(x \geq \frac{2\alpha m}{n} \). By Lemma 1.3, we have \(\rho_1 \geq \frac{2m}{n} \geq \frac{2\alpha m}{n} \) and thus

\[
S^\beta_\beta(G) \geq f \left(\frac{2m}{n} \right) = \left(\frac{2m}{n} \right)^\beta + \frac{(2m(\alpha n - 1))^\beta}{n^{\beta-1}(n-1)^{\beta-1}},
\]

with equality if and only if \(\rho_2 = \rho_3 = \cdots = \rho_n \) and \(\rho_1 = \frac{2m}{n} \). Therefore, \(G \) has exactly two distinct \(\lambda_\alpha \) eigenvalues and by Lemma 2.1, \(G \) is the complete graph \(K_n \), proving part (i).

(ii) Suppose that \(0 < \beta < 1 \). Then, clearly \(x^\beta \) is concave down when \(x > 0 \) or \(0 < \beta < 1 \). So,

\[
\left(\sum_{i=2}^{n} \frac{1}{n-1} \rho_i \right)^\beta \geq \sum_{i=2}^{n} \frac{1}{n-1} \rho_i^\beta,
\]

with equality if and only if \(\rho_2 = \rho_3 = \cdots = \rho_n \) and \(f(x) \) is decreasing for \(x \geq \frac{2\alpha m}{n} \). Now proceeding as in part (i), we obtain the required result. \(\square \)

Using similar arguments as in Theorem 2.3 and Lemma 1.8, we have the following.

(i) If \(\beta < 0 \) or \(\beta > 1 \), then

\[
S^\alpha_\beta(G) \geq \left(\frac{Z_2(G)}{n} \right)^\beta + \frac{(2m\alpha \sqrt{n} - Z_2(G))^\beta}{n^{\beta-1}(n-1)^{\beta-1}},
\]

with equality if and only if \(G \cong K_n \).

(ii) If \(0 < \beta < 1 \), then

\[
S^\alpha_\beta(G) \leq \left(\frac{Z_2(G)}{n} \right)^\beta + \frac{(2m\alpha \sqrt{n} - Z_2(G))^\beta}{n^{\beta-1}(n-1)^{\beta-1}},
\]

with equality if and only if \(G \cong K_n \).

Theorem 2.4. Let \(G \) be a graph of order \(n \geq 2 \) and \(1 \leq k \leq n-1 \) be a positive integer.

(i) If \(0 < \beta < 1 \), then

\[
S^\alpha_\beta(G) \leq k^{1-\beta} \left(\frac{2\alpha m k}{n} \right)^\beta + (n-k)^{1-\beta} \left(\frac{2\alpha m \left(\frac{n-k}{n} \right)}{n} \right)^\beta,
\]

with equality if and only if \(G \cong K_1 \).

(ii) If \(\beta > 1 \), then

\[
S^\alpha_\beta(G) \geq k^{1-\beta} \left(\frac{2\alpha m k}{n} \right)^\beta + (n-k)^{1-\beta} \left(\frac{2\alpha m \left(\frac{n-k}{n} \right)}{n} \right)^\beta,
\]
with equality if and only if $G \cong K_1$.

(iii) If $\beta < 0$, then

$$S_\beta^0(G) \leq k^{1-\beta} \left(\frac{2\alpha mk + \sqrt{\theta}}{n} \right)^\beta + (n-k)^\beta \left(\frac{2\alpha mk - \sqrt{\theta}}{n} \right)^\beta,$$

where $\theta = k(n-k)(n(\alpha^2 Z_2(G) + 2(1-\alpha)^2 m) - (2\alpha m)^2)$.

Proof. By power mean inequality with $0 < \beta < 1$, we have

$$\left(\frac{\sum_{i=1}^k \rho_i^\beta}{k} \right)^\frac{1}{\beta} \leq \frac{M_k}{k},$$

that is, $\sum_{i=1}^k \rho_i^\beta \leq k^{1-\beta} M_k^\beta$ with equality if and only if $\rho_1 = \rho_2 = \cdots = \rho_k$.

Similarly, $\sum_{i=k+1}^n \rho_i^\beta \leq (n-k)^{1-\beta} (2\alpha m - M_k)^\beta$, with equality if and only if $\rho_{k+1} = \rho_{k+2} = \cdots = \rho_n$.

Thus, by the definition of $S_\beta^0(G)$, we have

$$S_\beta^0(G) = \sum_{i=1}^k \rho_i^\beta + \sum_{i=k+1}^n \rho_i^\beta \leq k^{1-\beta} M_k^\beta + (n-k)^{1-\beta} (2\alpha m - M_k)^\beta.$$

Consider the function

$$f(x) = k^{1-\beta} x^\beta + (n-k)^{1-\beta} (2\alpha m - x)^\beta, \quad x \geq \frac{2\alpha mk}{n}.$$

We see that

$$f'(x) = \beta \left(\frac{x}{k} \right)^{\beta-1} - \left(\frac{2\alpha m - x}{n-k} \right)^{\beta-1} \leq 0$$

provided $0 < \beta < 1$ and $x \geq \frac{2\alpha mk}{k}$. Thus $f(x)$ is a decreasing function on $x \geq \frac{2\alpha mk}{k}$. Therefore, by equation (2.1), $M_k \geq \frac{2\alpha mk}{n}$ and we have

$$S_\beta^0(G) = f(M_k) \leq f \left(\frac{2\alpha mk}{n} \right) = k^{1-\beta} \left(\frac{2\alpha mk}{n} \right)^\beta + (n-k) \left(\frac{2\alpha m - 2\alpha mk}{n} \right)^\beta,$$

proving part (i).

Suppose equality holds, that is, $\rho_1 = \rho_2 = \cdots = \rho_k, \rho_{k+1} = \rho_{k+2} = \cdots = \rho_n$ and $M_k = \frac{2\alpha mk}{n}$. From this, we have $\rho_1 = \rho_2 = \cdots = \rho_n = \frac{2\alpha m}{n}$, which happens if $G \cong K_1$. Conversely, we can easily verify that equality occurs if $G \cong K_1$.

(ii) For $\beta > 1$, using power mean inequality as in part (i), we obtain

$$S_\beta^0(G) \geq k^{1-\beta} M_k^\beta + (n-k)^{1-\beta} (2\alpha m - M_k)^\beta.$$

Also, $f(x) = k^{1-\beta} x^\beta + (n-k)^{1-\beta} (2\alpha m - x)^\beta$ is an increasing function on $x \geq \frac{2\alpha mk}{n}$ for $\beta > 1$. Now proceeding similarly as in (i) we can establish (ii). Also, the equality can be discussed similar to (i).

(iii) We note that $f(x) = k^{1-\beta} x^\beta + (n-k)^{1-\beta} (2\alpha m - x)^\beta$ is an increasing function on $x \geq \frac{2\alpha mk}{n}$ as $\beta < 0$. From Equation (2.1) and Lemma 2.2, we have

$$\frac{2\alpha mk}{n} \leq x \leq \frac{2\alpha mk + \sqrt{\theta}}{n},$$
where $\theta = k(n - k)(n(\alpha^2 Z_2(G) + 2(1 - \alpha)^2m) - (2\alpha m)^2)$. Hence
\[
S_\beta^\alpha(G) \leq f \left(\frac{2\alpha m k + \sqrt{\theta}}{n} \right) = k^{1 - \beta} \left(\frac{2\alpha m k + \sqrt{\theta}}{n} \right)^\beta + (n - k)^\beta \left(\frac{2\alpha m k - \sqrt{\theta}}{n} \right)^\beta.
\]

Hence
\[
S_\alpha^\beta(G) = \rho_{1}^\beta + (n - 1)D_{n - 1}^{\beta} \left(\frac{2\alpha m k}{n} \right)^{\beta - \frac{\beta}{n - 1}}.
\]

For a connected graph G of order $n \geq 3$, let $D = \prod_{i=1}^{n} \rho_i$, where $\rho_1 \geq \rho_2 \geq \cdots \geq \rho_n$ are the eigenvalues of A_α.

Theorem 2.5. Let G be a connected (n, m) graph with $n \geq 3$. If $\beta < 0$ or $\beta > 1$, then
\[
S_\beta^\alpha(G) \geq \left(\frac{2m}{n} \right)^\beta + (n - 1)D^{\beta-1} \left(\frac{2m}{n} \right)^{\beta - \frac{\beta}{n - 1}},
\]
with equality if and only if $G \cong K_n$.

Proof. From the definition of $S_\beta^\alpha(G)$, we have $S_\beta^\alpha(G) = \rho_{1}^\beta + \sum_{i=2}^{n} \rho_i^\beta$. Applying arithmetic-geometric mean inequality to the second term of the R.H.S, we have
\[
S_\beta^\alpha(G) \geq \rho_{1}^\beta + (n - 1)\left(\prod_{i=2}^{n} \rho_i^\beta \right)^{\frac{1}{n - 1}} = \rho_{1}^\beta + (n - 1) \left(\frac{D}{\rho_1} \right)^{\beta - \frac{\beta}{n - 1}},
\]
with equality if and only if $\rho_2 = \rho_3 = \cdots = \rho_n$. Consider the function
\[
f(x) = x^\beta + (n - 1)D^{\beta-1}x^{\beta - \frac{\beta}{n - 1}}.
\]
After differentiation, we have
\[
f'(x) = \beta x^{\beta - 1} \left(\frac{n\beta}{x^{n - 1} - Dn^{n - 1}} - \frac{\beta}{n - 1} \right).
\]
For $\beta < 0$ or $\beta > 1$, we can easily verify that $f(x)$ is an increasing function for $x \geq D^{\frac{1}{n - 1}}$. Therefore, by Lemma 1.3 and using arithmetic-geometric inequality, we have
\[
\rho_1 \geq \frac{2m}{n} \geq \frac{2\alpha m}{n} = \frac{\sum_{i=1}^{n} \rho_i}{n} \geq \left(\prod_{i=1}^{n} \right)^{\frac{1}{n}} \frac{1}{n} = \frac{D}{n}.
\]
So, this implies that
\[
S_\beta^\alpha(G) \geq f \left(\frac{2m}{n} \right) = \left(\frac{2m}{n} \right)^\beta + (n - 1)D^{\beta-1} \left(\frac{2m}{n} \right)^{\beta - \frac{\beta}{n - 1}}\frac{1}{n - 1}.
\]
Equality occurs if and only if $\rho_1 = \frac{2m}{n}$ and $\rho_2 = \rho_3 = \cdots = \rho_n$. That is, if and only if G is degree regular with two distinct A_α eigenvalues. So, by Lemma 2.1, $G \cong K_n$. \qed
Theorem 2.6. Let \(G \) be a graph of order \(n \geq 2 \) and \(1 \leq k \leq n - 1 \) be a positive integer.

(i) If \(\beta < 0 \), \(0 < \beta < 1 \), then

\[
S_\beta^\alpha(G) \geq \frac{(2\alpha m)^{2-\beta}}{(\alpha^2 Z_2(G) + (1-\alpha)^2 2\alpha m)^{1-\beta}}.
\]

(ii) If \(1 < \beta \leq 2, \beta > 2 \), then

\[
S_\beta^\alpha(G) \leq \frac{(2\alpha m)^{2-\beta}}{(\alpha^2 Z_2(G) + (1-\alpha)^2 2\alpha m)^{1-\beta}}.
\]

Proof. Let \(a_1, a_2, \ldots, a_n \) be positive real numbers and let \(k \) be a real number with \(k \neq 0, \frac{1}{2}, 1 \). It is clear that, \(k < 0 \) or \(k > 0 \), so that \(\frac{2k-1}{k} > 0 \). By Hölder’s inequality, we have

\[
\sum_{i=1}^{n} a_i^k = \sum_{i=1}^{n} a_i^{\frac{k}{2k-1}} a_i^{\frac{k(2k-1)}{2k-1}} \leq \left(\sum_{i=1}^{n} a_i^{\frac{k}{2k-1}} \right)^{\frac{k}{2k-1}} \left(\sum_{i=1}^{n} a_i^{\frac{k(2k-1)}{2k-1}} \right)^{\frac{2k-1}{2k-1}},
\]

which implies that

\[
\sum_{i=1}^{n} a_i \geq \frac{\left(\sum_{i=1}^{n} a_i^k \right)^{\frac{2k-1}{k}}}{\left(\sum_{i=1}^{n} a_i^2 \right)^{\frac{k}{2k-1}}}.
\]

with equality if and only if \(a_1 = a_2 = \ldots = a_n \). Now, letting \(a = \rho_i \) and \(k = \frac{1}{\alpha} \), it implies that

\[
S_\beta^\alpha(G) = \sum_{i=1}^{n} \rho_i^\beta \geq \left(\frac{\sum_{i=1}^{n} \rho_i^k}{\sum_{i=1}^{n} \rho_i^2} \right)^{2-\beta} = \frac{(2\alpha m)^{2-\beta}}{(\alpha^2 Z_2(G) + (1-\alpha)^2 2\alpha m)^{1-\beta}},
\]

for each \(\beta < 0 \) or \(0 < \beta < 1 \). Similarly, if \(1 < \beta < 2 \) or \(\beta > 2 \), then \(\frac{1}{2} < k < 1 \) or \(0 < k < \frac{1}{2} \). Taking \(p = \frac{2k-1}{k}, q = \frac{2k-1}{2k-1} \) and noting that \(p > 0, q < 0 \) if \(\frac{1}{2} < k < 1 \); and \(p < 0, q > 0 \) if \(0 < k < \frac{1}{2} \). In each of these cases Hölder’s inequality gets reversed and the second part follows. \(\square \)

3. Bounds for \(IE^{A_\alpha} \) energy-like invariant

The graph invariant \(S_\beta^\alpha(G) = \sum_{i=1}^{n} \sqrt{\rho_i} = IE^{A_\alpha}(G) \) is called \(A_\alpha \)-energy-like invariant. From Theorem 2.3, we observe that

\[
IE^{A_\alpha}(G) \leq \sqrt{\frac{2m}{n}} + \sqrt{\frac{2m(\alpha n - 1)(n-1)}{n}},
\]

with equality if and only if \(G \cong K_n \).

Also, we have

\[
IE^{A_\alpha}(G) \leq \left(\frac{Z_2(G)}{n} \right)^{\frac{1}{2}} + \sqrt{\frac{(2\alpha \sqrt{n} - Z_2(G))(n-1)}{n}},
\]

with equality if and only if \(G \cong K_n \).
From Theorem 2.4 part (i), we have

\[IE^{A_{\alpha}}(G) \leq (\sqrt{k} + n - k) \sqrt{\left(\frac{2\alpha m}{n} \right)}, \]

with equality if and only if \(G \cong K_1 \).

If \(G - e \) is the connected graph obtained from \(G \) by the deletion of an edge \(e \), then

\[IE^{A_{\alpha}}(G) \geq IE^{A_{\alpha}}(G - e). \]

Further, we have

\[IE^{A_{\alpha}}(G) \leq \sqrt{(n - 1) + (n - 1)\alpha n - 1}, \]

with equality occurring in both cases if and only if \(G \cong K_n \).

Also

\[IE^{A_{\alpha}}(G) \leq \sqrt{x_1 + x_2} + (b - 1) \sqrt{(aa) + (a - 1)} \sqrt{(ab)}, \]

where \(x_1 = \frac{1}{2}(n - 1) + \alpha n + \left\{ k^2(4\alpha - 3) + k(2n - 2\alpha n - 4\alpha) + n(\alpha - 1)(\alpha n - \alpha + 2) + 1 \right\} \frac{1}{2} \) and \(x_2 = \frac{1}{2}(n - 1) + \alpha n - \left\{ k^2(4\alpha - 3) + k(2n - 2\alpha n - 4\alpha) + n(\alpha - 1)(\alpha n - \alpha + 2) + 1 \right\} \frac{1}{2} \), equality occurring in both cases if and only if \(G \cong K_{n,b} \).

If \(G \) has independence number \(k \), then

\[IE^{A_{\alpha}}(G) \leq \sqrt{x_1 + x_2} + (k - 1) \sqrt{(an - ak) + (n - k - 1) (an - 1)}, \]

equality occurs if and only if \(G \cong CS_{n-k,k} \).

From Lemma 1.9, if \(B = \frac{1}{2} \left(\alpha (\Delta + 1) + \sqrt{\alpha^2 (\Delta + 1)^2 + 4 \Delta (1 - 2\alpha)} \right) \), then we can easily see that \(\rho(G) \geq B \geq \frac{2\alpha m}{n} \). From second inequality of (2.4), it follows that

\[IE^{A_{\alpha}}(G) \leq \sqrt{B} + \sqrt{(n - 1)(2\alpha m - B)}, \]

where equality holds if and only if \(G \cong K_{1,\Delta} \).

Theorem 3.1. Let \(G \) be a connected graph \((n, m)\) graph, where \(n \geq 2 \). Then

\[IE^{A_{\alpha}}(G) \leq \left\{ 2\alpha m + (n - 1) \left((an - 1)(n - 2\alpha) + n(n - 1) \sqrt{(an - 1)} \right) \right\} \frac{1}{2} \]

where equality holds if and only if \(G \cong K_n \).

Proof. Let \(G \) be a connected graph of order \(n \geq 2 \) having \(A_{\alpha} \) eigenvalues \(\rho_1, \rho_2, \ldots, \rho_n \). Now

\[(IE^{A_{\alpha}}(G))^2 = \left(\sum_{i=1}^{n} \sqrt{\rho_i} \right)^2 = \sum_{i=1}^{n} \rho_i + 2 \sum_{i \neq j} \sqrt{\rho_i} \sqrt{\rho_j}. \]

(3.1)

As we know \(G \) is a connected spanning subgraph of \(K_n \), thus by Lemma 1.6 and noting that \(\alpha \) lies in \([\frac{1}{2}, 1]\), we have

\[\rho_1(G) \leq \rho_1(K_n) = n - 1, \quad \rho_i(G) \leq \rho_i(K_n) = \alpha n - 1, \quad i = 2, 3, \ldots, n. \]
Evaluating the second term of (3.1), we have
\[
\sum_{i \neq j} \sqrt{\rho_i \rho_j} = \sqrt{\rho_1 (\sqrt{\rho_2} + \sqrt{\rho_3} + \cdots + \sqrt{\rho_n})} + \sqrt{\rho_2 (\sqrt{\rho_3} + \sqrt{\rho_4} + \cdots + \sqrt{\rho_n})} + \cdots + \sqrt{\rho_{n-1} \sqrt{\rho_n}} \\
\leq (n-1)(\sqrt{(n-1)(\alpha n - 1)}) + (n-2)(\alpha n - 1) + \cdots + (\alpha n - 1) \\
= (n-1)\sqrt{(n-1)(\alpha n - 1)} + (\alpha n - 1) \left(\frac{(n-1)(n-2)}{2}\right).
\]

Hence, from equation (3.1), we obtain
\[
IE^{A_\alpha}(G) \leq \left\{ 2\alpha m + (n-1) \left((\alpha n - 1)(n-2) + 2(n-1)\sqrt{(n-1)(\alpha n - 1)} \right) \right\}^{\frac{1}{2}}.
\]

Equality occurs if and only if \(\rho_1(G) = \rho_1(K_n) = n-1\) and \(\rho_i(G) = \rho_i(K_n) = \alpha n - 1\) for \(i = 2, 3, \ldots, n\). That is, if and only if \(G \cong K_n\). □

Acknowledgments

We thank the referee for his valuable suggestions. The research of S. Pirzada is supported by SERB-DST, New Delhi under the research project number MTR/2017/000084.

References

S. Pirzada,
Department of Mathematics,
University of Kashmir,
India.
E-mail address: pirzadasd@kashmiruniversity.ac.in

and

Bilal A. Rather,
Department of Mathematics,
University of Kashmir,
India.
E-mail address: bilalahmadrr@gmail.com

and

Rezwan Ul Shaban,
Department of Mathematics,
University of Kashmir,
India.
E-mail address: rezwanbhat21@gmail.com

and

T. A. Chishti,
Mathematics Section, DDE
University of Kashmir,
India.
E-mail address: tachishtiuok.edu.in