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abstract: In this work, we establish sufficient conditions for the existence of nonnegative solutions for a
class of first order impulsive difference equations with a family of nonlinear boundary conditions. To prove our
main result we use a new topological approach on the fixed point index theory for the sum of two operators
in Banach spaces. An example is given to illustrate the main result.
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1. Introduction

Many phenomena studied in applied sciences are represented by differential equations and difference
equations. However, many of them have a sudden change in their states such as neural networks models,
population models, models in economics, etc. For more details, we refer the reader to the book [1].
An impulsive difference equation is described by three components:
a difference equation, which governs the state of the system between impulses; an impulse equation,
which models an impulsive jump defined by a jump function at the instant an impulse occurs; and a
jump criterion, which defines a set of jump events in which the impulse equation is active.

This paper is devoted to investigate the following boundary value problem for impulsive difference
equations with nonlinear two point functional boundary conditions

∆x(n) = f(n, x(n)), n 6= nk, n ∈ J,

∆x(nk) = Ik(x(nk)), n = nk,

Mx(0) − Nx(T ) = g(x(0), x(T )),

(1.1)

where ∆ is the forward difference operator, i.e., ∆u(n) = u(n + 1) − u(n), J = [0, T ] ∩N, T ∈ N, N is the
set of natural numbers, M, N > 0, f ∈ C(J × R), g ∈ C(R × R), Ik ∈ C(R), k ∈ {1, . . . , p}, {nk}p

k=1 are
fixed points such that

0 < n1 < n2 < . . . < np < T, p ∈ N.

In this paper we propose a new approach to ensure the existence of at least one nonnegative solution to
the BVP (1.1). The nonlinear terms in the equation and in the boundary conditions as well as the jump
function satisfy a general polynomial growth conditions. Our existence result is based on a recent fixed
point index theory developed in [2,3] for the sum of two operators on cones of a Banach space. Precisely,
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our method involves the fixed point index for the sum of two operators T +F on cones of a Banach space,
where I − T is Lipschitz invertible and F is a k-set contraction.

When the function g is a constant, criteria on the existence of minimal and maximal solutions to
the BVP (1.1) are obtained in [7] by using a comparison theorem and the method of upper and lower
solutions coupled with the monotone iterative technique. These two methods as well as the fixed point
theory are the most common techniques used in the literature to investigate the existence of solutions for
first order impulsive difference equations. Tian et al. [6] investigated periodic boundary value problems
for first order impulsive difference equations with time delay. The authors in [4,9] analyzed the existence
of solutions for a first order functional difference equations without impulses with nonlinear functional
boundary conditions. In [8,10] they studied the existence of solutions for difference equations involving
causal operators without impulses with nonlinear boundary conditions. The authors in [5] obtained
the existence of positive solutions for a class of first order impulsive difference equations with periodic
boundary value conditions using fixed point theorems of Krasnosel’skii and Leggett Williams.
Motivated by the previous works, the boundary conditions considered in this paper involving nonlinear
functional at two point are more general. They include, among others, periodic, multipoint boundary
value conditions and integral boundary value conditions as particular cases.

The paper is organized as follows. In the next section, we give some preliminary results. In Section
3, we give some auxiliary results and we prove our main result. In Section 4, we give an example that
illustrates our main result.

2. Preliminaries

Definition 2.1. Let E be a Banach space. A nonempty closed convex set P ⊂ E is called a cone provided:

1. αx ∈ P for any α ≥ 0 and for any x ∈ P,

2. x ∈ P, −x ∈ P implies x = 0.

Definition 2.2. Let E be a real Banach space. A mapping K : E → E is said to be completely continuous
if it is continuous and maps bounded sets into relatively compact sets.

In all what follows, P will refer to a cone in a Banach space (E, ‖.‖), and U is a bounded open subset
of P, Ω ⊂ P. The fixed point index i∗(T + F, U ∩ Ω,P) defined by

i∗ (T + F, U ∩ Ω,P) =

{

i ((I − T )−1F, U,P), if U ∩ Ω 6= ∅
0, if U ∩ Ω = ∅,

(2.1)

is well defined whenever T : Ω → E is such that (I − T ) is Lipschitz invertible with constant γ > 0 and
F : U → E is a k-set contraction with 0 ≤ k < γ−1 and F (U) ⊂ (I − T )(Ω). For more details see [2,3].

The following result (see details of its proof in [3] and [2]) will be used to prove Theorem 3.1.

Proposition 2.3. [3] Assume that the mapping T : Ω ⊂ P → E be such that (I−T ) is Lipschitz invertible
with constant γ > 0, F : U → E is a k-set contraction with 0 ≤ k < γ−1, and tF (U) ⊂ (I − T )(Ω) for all
t ∈ [0, 1]. If (I − T )−10 ∈ U , and

(I − T )x 6= λFx for all x ∈ ∂U
⋂

Ω and 0 ≤ λ ≤ 1,

then the fixed point index i∗ (T + F, U
⋂

Ω,P) = 1.
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3. Main result

We suppose that

(H1) The functions f , g, Ik, k ∈ {1, . . . , p}, satisfy

0 ≤ f(n, x(n)) ≤ a1(n) + a2(n)|x(n)|p1 ,

0 ≤ g(x(0), x(T )) ≤ b1 + b2|x(0)|p2 + b3|x(T )|p3 ,

0 ≤ Ik(x(nk)) ≤ a3(nk) + a4(nk)|x(nk)|p4 , k ∈ {1, . . . , p},

where a1, a2, a3, a4 ∈ C(J,R) are positive functions, b1, b2, b3, p1, p2, p3, p4 are nonnegative
constants, and

0 ≤ a1(n), a2(n), a3(n), a4(n), b1, b2, b3 ≤ D, n ∈ J,

for some positive constant D.

and

(H2) The constants c ∈ (0, 1), B > 0, D > 0, M > 0, N > 0, T ∈ N, pj ≥ 0, j ∈ {1, . . . , 4}, satisfy

M − N(1 − c)T > 0

and

B1 =
D (1 + Bp2 + Bp3 )

M − N(1 − c)T

+2T
M + N

M − N(1 − c)T
(D(1 + Bp1 + Bp4 ) + cB)

< B.

Our main result is as follows.

Theorem 3.1. Suppose that (H1) and (H2) hold. Then the BVP (1.1) has at least one nonnegative
solution x ∈ C(J,R) so that

0 ≤ x(n) < B, n ∈ J.

Remark 3.2. In [7], the BVP (1.1) is investigated when

f(n, x) − f(n, y) ≥ −L(x − y)

for α0 ≤ α(n) ≤ y ≤ x ≤ β(n) ≤ β0, n ∈ J , and

Ik(x) − Ik(y) ≥ −Lk(x − y)

for α0 ≤ α(nk) ≤ y ≤ x ≤ β(nk) ≤ β0, k ∈ {1, . . . , p}, and g is a constant, where α0, β0 are nonnegative
constants, α and β are suitable nonnegative functions, 0 < L, Lk < 1, k ∈ {1, . . . , p}. It is given in [7] a
criteria for existence of nonnegative minimal and maximal solutions. If

f(n, x) = Ik(x) =
a

(1 + x)2
, x ≥ 0, a >

(1 + β0)4

1 + α0
,
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Then

Ik(x) − Ik(y) = f(n, x) − f(n, y)

=
a

(1 + x)2
−

a

(1 + y)2

= −
a(x − y)(2 + x + y)

(1 + x)2(1 + y)2

≤ −
2a(x − y)(1 + α0)

(1 + β0)4

< −2(x − y), α0 ≤ y ≤ x ≤ β0.

Thus, the conditions in [7] are not fulfilled, but our conditions hold. Also, our main result is valid in
the case when g is not a constant. Therefore we can consider our main result as a complementary and
improvement result to those in [7].

3.1. Auxiliary Results

In [7], it is shown that the solution of the BVP

∆u(n) + cu(n) = σ(n), n 6= nk, n ∈ J,

∆u(nk) = −Lku(nk) + Ik(η(nk)) + Lkη(nk), k ∈ {1, . . . , p},

Mu(0) − Nu(T ) = C,

where 0 < c < 1, Lk, C, k ∈ {1, . . . , p}, are given constants, η ∈ E1, σ ∈ C(J), where E1 is the set of
real-valued functions defined on J , is represented in the form

u(n) =
C(1 − c)n)

M − N(1 − c)T
+

T −1
∑

j=0,j 6=nk

G(n, j)σ(j)

+
∑

0<nk≤T −1

G(n, nk) ((c − Lk)u(nk) + Ik(η(uk)) + Lkη(uk)) ,

where

G(n, j) =
1

M − N(1 − c)T











M
(1−c)n

(1−c)j+1 , 0 ≤ j ≤ n − 1,

N
(1−c)T +n

(1−c)j+1 , n ≤ j ≤ T − 1.

We have that

G(n, j) ≤
M + N

M − N(1 − c)T
, n, j ∈ J. (3.1)

In the Banach space C(J,R) of the continuous real-valued functions defined on J , define the norm

‖x‖ = max
n∈J

|x(n)|.

Lemma 3.3. Suppose that (H1) holds. If x ∈ C(J,R), ‖x‖ ≤ B, then

0 ≤ f(n, x(n)) ≤ D (1 + Bp1 ) , n ∈ J,

0 ≤ g(x(0), x(T )) ≤ D (1 + Bp2 + Bp3 ) ,

0 ≤ Ik(x(nk)) ≤ D (1 + Bp4 ) , k ∈ {1, . . . , p}.
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Proof: By (H1), we get

0 ≤ f(n, x(n))

≤ a1(n) + a2(n)|x(n)|p1

≤ D (1 + Bp1 ) , n ∈ J,

and

0 ≤ g(x(0), x(T ))

≤ b1 + b2|x(0)|p2 + b3|x(T )|p3

≤ D (1 + Bp2 + Bp3 ) ,

and

0 ≤ Ik(x(nk))

≤ a3(nk) + a4(nk)|x(nk)|p4

≤ D (1 + Bp4 ) , k ∈ {1, . . . , p}.

This completes the proof. �

Lemma 3.4. Suppose that (H1) holds. Let x ∈ C(J,R) satisfies the equation

x(n) =
g(x(0), x(T ))(1 − c)n

M − N(1 − c)T
+

T −1
∑

j=0,j 6=nk

G(n, j) (f(j, x(j)) + cx(j))

+
∑

0<nk≤T −1

G(n, nk) (cx(nk) + Ik(x(nk))) , n ∈ J.

Then it satisfies the BVP (1.1).

Proof: We have

x(n) =
g(x(0), x(T ))(1 − c)n

M − N(1 − c)T

+
M(1 − c)n

M − N(1 − c)T

∑

0≤j≤n−1,j 6=nk

1

(1 − c)j+1
(f(j, x(j)) + cx(j))

+
N(1 − c)T +n

M − N(1 − c)T

∑

n≤j≤T −1,j 6=nk

1

(1 − c)j+1
(f(j, x(j)) + cx(j))

+
M

M − N(1 − c)T

∑

0<nk≤n−1

(1 − c)n

(1 − c)nk+1
(cx(nk) + Ik(x(nk)))

+
N

M − N(1 − c)T

∑

n≤nk≤T −1

(1 − c)T +n

(1 − c)nk+1
(cx(nk) + Ik(x(nk))) , n ∈ J.
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Hence, for n 6= nk, k ∈ {1, . . . , p}, we have

x(n + 1) =
g(x(0), x(T ))(1 − c)n+1

M − N(1 − c)T

+
M(1 − c)n+1

M − N(1 − c)T

∑

0≤j≤n,j 6=nk

1

(1 − c)j+1
(f(j, x(j)) + cx(j))

+
N(1 − c)T +n+1

M − N(1 − c)T

∑

n+1≤j≤T −1,j 6=nk

1

(1 − c)j+1
(f(j, x(j)) + cx(j))

+
M

M − N(1 − c)T

∑

0<nk≤n

(1 − c)n+1

(1 − c)nk+1
(cx(nk) + Ik(x(nk)))

+
N

M − N(1 − c)T

∑

n+1≤nk≤T −1

(1 − c)T +n+1

(1 − c)nk+1
(cx(nk) + Ik(x(nk)))

=
g(x(0), x(T ))(1 − c)n+1

M − N(1 − c)T
+

M

M − N(1 − c)T
(f(n, x(n)) + cx(n))

+
M(1 − c)n+1

M − N(1 − c)T

∑

0≤j≤n−1,j 6=nk

1

(1 − c)j+1
(f(j, x(j)) + cx(j))

−
N(1 − c)T

M − N(1 − c)T
(f(n, x(n)) + cx(n))

+
N(1 − c)T +n+1

M − N(1 − c)T

∑

n≤j≤T −1,j 6=nk

1

(1 − c)j+1
(f(j, x(j)) + cx(j))

+
M(1 − c)n+1

M − N(1 − c)T

∑

0<nk≤n−1

1

(1 − c)nk+1
(cx(nk) + Ik(x(nk)))

+
N(1 − c)T +n+1

M − N(1 − c)T

∑

n≤nk≤T −1

1

(1 − c)nk+1
(cx(nk) + Ik(x(nk)))

= (1 − c)

(

g(x(0), x(T ))(1 − c)n

M − N(1 − c)T

+
M(1 − c)n

M − N(1 − c)T

∑

0≤j≤n−1,j 6=nk

1

(1 − c)j+1
(f(j, x(j)) + cx(j))

+
N(1 − c)T +n

M − N(1 − c)T

∑

n≤j≤T −1,j 6=nk

1

(1 − c)j+1
(f(j, x(j)) + cx(j))

+
M(1 − c)n

M − N(1 − c)T

∑

0<nk≤n−1

1

(1 − c)nk+1
(cx(nk) + Ik(x(nk)))

+
N(1 − c)T +n

M − N(1 − c)T

∑

n≤nk≤T −1

1

(1 − c)nk+1
(cx(nk) + Ik(x(nk)))

)

+f(n, x(n)) + cx(n)
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= (1 − c)x(n) + f(n, x(n)) + cx(n)

= f(n, x(n)) + x(n).

So,
∆x(n) = f(n, x(n)), n 6= nk.

Next, for n = nk, k ∈ {1, . . . , p}, we have

∆x(nk) = x(nk + 1) − x(nk)

=
g(x(0), x(T ))(1 − c)nk+1

M − N(1 − c)T

+
M(1 − c)nk+1

M − N(1 − c)T

∑

0≤j≤nk ,j 6=nl

1

(1 − c)j+1
(f(j, x(j)) + cx(j))

+
N(1 − c)T +nk+1

M − N(1 − c)T

∑

nk+1≤j≤T −1,j 6=nl

1

(1 − c)j+1
(f(j, x(j)) + cx(j))

+
M(1 − c)nk+1

M − N(1 − c)T

∑

0<nl≤nk

1

(1 − c)nl+1
(cx(nl) + Il(x(nl)))

+
N(1 − c)T +nk+1

M − N(1 − c)T

∑

nk+1≤nl≤T −1

1

(1 − c)nl+1
(cx(nl) + Ik(x(nl)))

−x(nk)

= (1 − c)

(

g(x(0), x(T ))(1 − c)nk

M − N(1 − c)T

+
M(1 − c)nk

M − N(1 − c)T

∑

0≤j≤nk−1,j 6=nl

1

(1 − c)j+1
(f(j, x(j)) + cx(j))

+
N(1 − c)T +nk

M − N(1 − c)T

∑

nk≤j≤T −1,j 6=nl

1

(1 − c)j+1
(f(j, x(j)) + cx(j))

+
M(1 − c)nk

M − N(1 − c)T

∑

0<nl≤nk−1

1

(1 − c)nl+1
(cx(nl) + Ik(x(nl)))

+
N(1 − c)T +nk

M − N(1 − c)T

∑

nk≤nl≤T −1

1

(1 − c)nl+1
(cx(nl) + Ik(x(nl)))

)

+
M

M − N(1 − c)T
(cx(nk) + Ik(x(nk)))

−
N(1 − c)T

M − N(1 − c)T
(cx(nk) + Ik(x(nk))) − x(nk)

= (1 − c)x(nk) + cx(nk) + Ik(x(nk)) − x(nk)

= Ik(x(nk)).



8 L. Bouchal and K. Mebarki and S. G. Georgiev

Moreover,

Mx(0) =
g(x(0), x(T ))M

M − N(1 − c)T

+
MN(1 − c)T

M − N(1 − c)T

∑

0≤j≤T −1,j 6=nk

1

(1 − c)j+1
(f(j, x(j)) + cx(j))

+
MN(1 − c)T

M − N(1 − c)T

∑

0≤nk≤T −1

1

(1 − c)nk+1
(cx(nk) + Ik(x(nk))) ,

Nx(T ) =
g(x(0), x(T ))N(1 − c)T

M − N(1 − c)T

+
MN(1 − c)T

M − N(1 − c)T

∑

0≤j≤T −1,j 6=nk

1

(1 − c)j+1
(f(j, x(j)) + cx(j))

+
MN(1 − c)T

M − N(1 − c)T

∑

0≤nk≤T −1

1

(1 − c)nk+1
(cx(nk) + Ik(x(nk))) .

Therefore

Mx(0) − Nx(T ) = g(x(0), x(T )).

This completes the proof. �

For x ∈ C(J,R), define the operator

Fx(n) =
g(x(0), x(T ))

M − N(1 − c)T
+

T −1
∑

j=0,j 6=nk

G(n, j) (f(j, x(j)) + cx(j))

+
∑

0<nk≤T −1

G(n, nk) (cx(nk) + Ik(x(nk))) , n ∈ J.

By Lemma 3.4, it follows that any fixed point x ∈ C(J,R) of the operator F is a solution to the BVP
(1.1).

Lemma 3.5. Suppose that f ∈ C(J × R), g ∈ C(R × R) and Ik ∈ C(R), k ∈ {1, . . . , p}. Then F :
C(J,R) → C(J,R) is a continuous operator.

Proof: (a) Since G ∈ C(J × J), f ∈ C(J × R), g ∈ C(R × R) and Ik ∈ C(R), k ∈ {1, . . . , p}, the operator
F maps C(J,R) into C(J,R).

(b) F is continuous. In fact, take {xl}l∈N ⊂ C(J,R) such that xl → x, as l → +∞ in C(J,R). Fix
ε > 0 arbitrarily. Then there is a δ = δ(ε) ∈ N such that

|xl(n) − x(n)| < ε,

|f(n, xl(n)) − f(n, x(n))| < ε,

|Ik(xl(n)) − Ik(x(n))| < ε

for any n ∈ J , k ∈ {1, . . . , p}, and for any l ≥ δ.
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We have

|Fxl(n) − Fx(n)| =

∣

∣

∣

∣

g(xl(0), xl(T )) − g(x(0), x(T ))

M − N(1 − c)T

+
T −1
∑

j=0,j 6=nk

G(n, j) ((f(j, xl(j)) − f(j, x(j))) + c(xl(j) − x(j)))

+
∑

0<nk≤T −1

G(n, nk) (c(xl(nk) − x(nk)) + (Ik(xl(nk)) − Ik(x(nk))))

∣

∣

∣

∣

≤
|g(xl(0), xl(T )) − g(x(0), x(T ))|

M − N(1 − c)T

+

T −1
∑

j=0,j 6=nk

G(n, j) (|f(j, xl(j)) − f(j, x(j))| + c|xl(j) − x(j)|)

+
∑

0<nk≤T −1

G(n, nk) (c|xl(nk) − x(nk)| + |Ik(xl(nk)) − Ik(x(nk))|)

<
ε

M − N(1 − c)T

+
T −1
∑

j=0,j 6=nk

M + N

M − N(1 − c)T
(ε + c ε)

+
∑

0<nk≤T −1

M + N

M − N(1 − c)T
(ε + c ε)

≤ ε

(

1

M − N(1 − c)T

+2T
M + N

M − N(1 − c)T
(1 + c)

)

, n ∈ J, l ≥ δ.

This completes the proof. �

Lemma 3.6. Suppose that (H1) and (H2) hold. For x ∈ C(J,R), ‖x‖ ≤ B, we have

Fx(n) ≤ B1, |∆Fx(n)| ≤ 2B1, n ∈ J.

Proof: We have

Fx(n) ≤
D (1 + Bp2 + Bp3 )

M − N(1 − c)T

+

T −1
∑

j=0,j 6=nk

M + N

M − N(1 − c)T
(D (1 + Bp1 + Bp4 ) + cB)

+
∑

0<nk≤T −1

M + N

M − N(1 − c)T
(D (1 + Bp1 + Bp4 ) + cB)
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≤
D (1 + Bp2 + Bp3 )

M − N(1 − c)T

+2T
M + N

M − N(1 − c)T
(D(1 + Bp1 + Bp4 ) + cB)

= B1, n ∈ J.

Next,

|∆Fx(n)| = |Fx(n + 1) − Fx(n)|

≤ Fx(n + 1) + Fx(n)

≤ 2B1, n ∈ J.

This completes the proof. �

3.2. Proof of the Main Result

Take ǫ > 0 arbitrarily. Let E = C(J,R) be endowed with the norm ‖x‖ = max
n∈J

|x(n)|, and

P = {x ∈ E : x(n) ≥ 0, n ∈ J},

Ω = P2B = {x ∈ P : ‖x‖ < 2B} ,

U = PB = {x ∈ P : ‖x‖ < B} .

For x ∈ E, define the operators

T1x(n) = (1 + ǫ)x(n),

F1x(n) = −ǫFx(n), n ∈ J.

Note that for any fixed point x ∈ E of the operator T1 + F1 we have that x ∈ E and it is a solution of
the BVP (1.1).

1. For x, y ∈ E, we have

‖(I − T1)−1x − (I − T1)−1y‖ =
1

ǫ
‖x − y‖,

i.e., (I − T1) : E → E is Lipschitz invertible with constant 1
ǫ
.

2. According to the Arzelà-Ascoli compactness criteria, by Lemma 3.5 and Lemma 3.6, it follows that
F1 : U → E is a completely continuous operator. Therefore F1 : U → E is a 0-set contraction.

3. Let t ∈ [0, 1] and x ∈ U be arbitrarily chosen. Then

z = tFx ∈ E

and

z(n) ≤ tB1

< tB

≤ B, n ∈ J,
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i.e., z ∈ Ω. Next,

tF1x(n) = −tǫFx(n)

= −ǫz(n)

= (I − T1)z(n), n ∈ J.

Thus, tF1(U) ⊂ (I − T1)(Ω).

4. Note that
(I − T1)−10 = 0 ∈ U.

5. Assume that there are x ∈ ∂U
⋂

Ω and λ ∈ [0, 1] such that

(I − T1)x = λF1x.

If λ = 0, then
0 = (I − T1)x = −ǫx on J,

whereupon x(n) = 0, n ∈ J . This is a contradiction because x ∈ ∂U . Therefore λ ∈ (0, 1]. Let
n1 ∈ J be such that x(n1) = B. Then

(I − T1)x(n1) = −ǫx(n1)

= −ǫB

= −ǫλFx(n1),

whereupon

B = λFx(n1)

≤ λB1

< λB

≤ B,

i.e., B < B, which is a contradiction.

Consequently, from Proposition 2.3 and the existence property of the fixed point index, it follows that
the operator T1 + F1 has a fixed point in U . Denote it by x. We have

0 ≤ x(n) < B, n ∈ J,

and x ∈ E is a solution of the BVP (1.1).

4. Example

Let

D =
1

1010000
, B = 1, p = 4, p1 = p2 = p3 = p4 = 2, T = 20,

and

a1(n) = a2(n) = a3(n) = a4(n) =
1

1010000
, n ∈ [0, 20], b1 = b2 = b3 =

1

1010000
,



12 L. Bouchal and K. Mebarki and S. G. Georgiev

n1 = 1, n2 = 3, n3 = 7, n4 = 11,

and

N = 1, c =
1

1010000
, M = 10100.

Then

B1 =
3

1010000

10100 −
(

1 − 1
1010000

)20 + 40
10100 + 1

10100 −
(

1 − 1
1010000

)20

(

4

1010000

)

< 1 = B

and the BVP

∆x(n) =
(x(n))2

1010000(n2 + 1)
, n ∈ [0, 20],

∆x(nk) =
(x(nk))2

1010000
, k ∈ {1, 2, 3, 4},

10100x(0) − x(20) =
(x(0))2

1010000(1 + x(20) + (x(20))2)

has a solution x ∈ C([0, 20] ∩ N,R) so that

0 ≤ x(n) < 1, n ∈ {0, 1, . . . , 20}.
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