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New Parametrization of Bertrand Partner D-curves in E
3 ∗

Stuti Tamta and Ram Shankar Gupta

abstract: We define and study a new parametrization of a Bertrand partner D-curve {α, α
∗} in Euclidean

3-space by not taking Darboux frame element g
∗ of Bertrand partner D-curve α

∗ parallel to
−−→
α α

∗. We obtain
a necessary and sufficient condition for a curve to be such type of Bertrand D-curves. Also, we obtain a
characterization of a new parametrization of asymptotic Bertrand D-curves and provide an example.
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torsion.

Contents

1 Introduction 1

2 Preliminary 2

3 A new parametrization of Bertrand D-pair curves in E
3 2

4 Examples 9

1. Introduction

In the classical differential geometry of curves, J. Bertrand [4] studied curves in Euclidean 3-space
whose principal normals are the principal normals of another curve at corresponding points. Further,
these curves were characterized in E

3 with condition ak + bτ = 1, where a, b are real constants and k and
τ are the curvature and torsion of the curve, respectively [8]. The Bertrand pair curve was studied by
many authors in Riemannian and pseudo-Riemannian metric spaces, please see [1,2,10] and references
therein.

The Frenet formulas were discovered by Frenet in 1847 and independently by Serret in 1851, and by
this time the theory of surfaces in E

3 was already widely studied by many geometers. The Frenet approach
of moving frames to study curves in Euclidean spaces led Darboux to introduce the Darboux frame to
study surfaces. This frame is a natural moving frame to characterize curves on surfaces. Darboux frame
is useful to understand the kinematics of spin-rolling motion in a nonholonomic system which expresses
moving objects in terms of geometric invariants of contact curve which includes curvatures and geodesic
torsion [7]. The Darboux frame model is also helpful to reduce the complexity of the problem under
spin-rolling motion. Darboux frame can be used as a bridge corresponding to the Frenet frame, since
functionals of surface energy are constructed by functionals of energy constructed for curves [8].

In [13], Senturk et al. characterized ruled surface with Darboux frame in E
3. In [9], Duldul et al.

extended the Darboux frame in Euclidean 4-space E
4. In 2013, Bektas et al. [3] studied special involute-

evolute partner D-curves which lie on surfaces completely in E
3. In 2016, Kazaz et al. [11] defined the

Bertrand curve lying on the surfaces and called these new associated curves as Bertrand D-curve by using
the Darboux frame of the curves.

Recently, in [6], Camci et al. introduced a new relationship between Bertrand pair curves α and α∗

in E
3 by not taking the vector

−−→
α∗ α parallel to a normal vector of α. In view of this, we define and study

a new parametrization of Bertrand partner D-curve by not taking the vector
−−→
α α∗ parallel to g∗ of α∗

in Euclidean 3-space. The paper is organized as follows: In section 2, we quote some basic notations
on curves that are relevant to the rest of the paper. In section 3, we study a new parametrization of
Bertrand partner D-curves in E

3. In section 4, we provide examples of such types of curves.
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2. Preliminary

Let α = α(s) be a regular curve with arc-length ‘s’, fully lying on oriented surface S in E
3. There

exists a Frenet frame (T, N, B) at each point of the curve α(s) where T is the unit tangent vector, N is
the principal normal vector and B is a binormal vector. The Frenet formula of the curve α(s) is given
by [5,8]





T ′

N ′

B′



 =





0 k 0
−k 0 τ

0 − τ 0









T

N

B



 , (2.1)

where k, τ are curvature and torsion of α, respectively. Also, there exists a Darboux frame {T, g, n} of
the curve α(s) on the surface S, where n is the unit normal of the surface S and a unit vector g = n × T .
Moreover, we have the following relation between Frenet frame and Darboux frame [5,8]:





T

g

n



 =





1 0 0
0 cosφ sinφ

0 −sinφ cosφ









T

N

B



 , (2.2)

where φ is the angle between g and N . Also, the derivative formula of the Darboux frame is given





T ′

g′

n′



 =





0 kg kn

−kg 0 τg

−kn −τg 0









T

g

n



 , (2.3)

where kg, kn and τg are called the geodesic curvature, normal curvature, and geodesic torsion, respec-
tively.

A regular curve α(s) lying on a surfaces S is called

• a geodesic curve if and only if kg = 0.

• an asymptotic line if and only if kn = 0.

• a principal line if and only if τ g = 0.

Definition 2.1. For a given point, a set of curves such that any straight line through the point intersects
all the curves in the set at the same angle, then these set of curves are called homothetic curves [12].
Otherwise, it is called non-homothetic curves.

In [11], the authors defined Bertrand partner D-pair curve (α, α∗) completely lying on S and S∗ in
E

3 where α(s) is given by

α(s) = α∗(s∗) + λ∗(s∗)g∗(s∗), (2.4)

where λ∗ is a non-zero constant and g∗ is Darboux frame element of α∗(s∗).

Now, we define a new parametrization of mate curve α and α∗ such that the vector
−−→
α∗α does not

have to be parallel to g∗ which is given by

α(s) = α∗(s∗) + u∗(s∗) T ∗(s∗) + v∗(s∗) g∗(s∗) + w∗(s∗) n∗(s∗) (2.5)

where u∗(s∗), v∗(s∗) and w∗(s∗) are differentiable functions and {T ∗(s∗), g∗(s∗), n∗(s∗)} is the Darboux
frame of α∗(s∗). If we take u∗ = w∗ = 0 in (2.5), we obtain (2.4). Hence, (2.5) is the generalization of
Bertrand D-pair curves in E

3.

3. A new parametrization of Bertrand D-pair curves in E
3

In this section, we study a Bertrand D-pair curve satisfying (2.5).
We have:
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Definition 3.1. Let α(s) : I → S ⊂ E3 and α∗(s∗) : I∗ → S∗ ⊂ E3 be a pair curve in E
3 with arc

length parameter s and s∗ and Darboux frames {T, g, n} and {T ∗, g∗, n∗} completely lying on S and S∗,
satisfying (2.5). If the Darboux frame element g of α coincides with the Darboux frame element of g∗ of
α∗, i.e, g = ǫ1 g∗, where ǫ1 = ±1 at the corresponding points of the curves, then α is called a Bertrand
D-curve, α∗ is called a Bertrand partner D-curve of α and the pair {α, α∗} is said to be a Bertrand
D-pair curve.

The relation between the T and n of α(s) with the Darboux frame elements T ∗ and n∗ of α∗(s∗) is
given as [11]

T = cosθ T ∗ − sinθ n∗, n = sinθ T ∗ + cosθ n∗, (3.1)

where θ is the angle between the tangent vector T and T ∗ at the corresponding points of α and α∗.
Now onwards, we denote kg, k∗

g , kn, k∗
n, τg, τ∗

g the geodesic curvature, normal curvature and geodesic
torsion of α and α∗ respectively. Also, we denote by

δ =
(1 − v∗k∗

g − w∗k∗
n + u∗′)

ds
ds∗

, γ =
(u∗k∗

n + v∗τ∗
g + w∗′)

ds
ds∗

, h =
δ

γ
. (3.2)

Next, we have

Theorem 3.2. Let α(s) and α∗(s∗) be a Bertrand D-pair curve satisfying (2.5) with arc length parameter
s and s∗, completely lying on S and S∗ in E

3, respectively. Then, either

(i) we have

u∗k∗
g − w∗τ∗

g + v∗′ = 0, w∗′ + u∗k∗
n + v∗τ∗

g = 0, (3.3)

and there exist a homothety map between curves α and α∗ such that

T = ǫ1T ∗, g = ǫ1g∗, n = ǫ1n∗ (3.4)

or
(ii) we have

u∗k∗
g − w∗τ∗

g + v∗′ = 0, w∗′ + u∗k∗
n + v∗τ∗

g 6= 0, (3.5)

γ2 =
1

1 + h2
,

hk∗
g − τ∗

g

kg

6= 0,
k∗

g + hτ∗
g

τ g

6= 0.

T = δT ∗ + γn∗, g = λg∗, n
ds

ds∗
= P (s) T ∗ + Q(s) n∗, (3.6)

where prime denotes the derivative with respect to s∗ and



























λ =
(δk∗

g−γτ∗

g)

kg
ds

ds∗

= ±1,

P (s) =
−

(

hk∗

g−τ∗

g

)(

u∗k∗

n+v∗τ∗

g+w∗′

)

(

ds
ds∗

)

2

kg

(

h2+1
)

(

k∗

g+hτ∗

g

)

τ g
,

Q(s) =

(

hk∗

g −τ∗

g

)(

u∗k∗

n+v∗τ∗

g+w∗′

)

h
(

ds
ds∗

)

2

kg

(

h2+1
)

(

k∗

g +hτ∗

g

)

τg
.

(3.7)

Proof: Suppose α and α∗ be a Bertrand partner D-curve satisfying (2.5). Then, differentiating (2.5)
with respect to s∗ and using (2.3), we have

T
ds

ds∗
= (1 − v∗k∗

g − w∗k∗
n + u∗′)T ∗ + (u∗k∗

g − w∗τ∗
g + v∗′)g∗+

(u∗k∗
n + v∗τ∗

g + w∗′)n∗.

(3.8)
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By taking the scalar product of (3.8) with g, we find

u∗k∗
g − w∗τ∗

g + v∗′ = 0. (3.9)

Substituting (3.9) in (3.8), we find

T
ds

ds∗
= (1 − v∗k∗

g − w∗k∗
n + u∗′)T ∗ + (u∗k∗

n + v∗τ∗
g + w∗′)n∗. (3.10)

Therefore, we have

T = δT ∗ + γn∗. (3.11)

Taking the inner product of (3.11) with itself and using the third relation of (3.2), we obtain

γ2 =
1

h2 + 1
. (3.12)

Now, we consider the following two cases depending upon γ = 0 and γ 6= 0:

Case I. Assume that γ = 0. Then, we get

u∗k∗
n + v∗τ∗

g + w∗′ = 0. (3.13)

Putting (3.9) and (3.13) in (3.8), we get

T
ds

ds∗
= (1 − v∗k∗

g − w∗k∗
n + u∗′)T ∗. (3.14)

By taking the scalar product of (3.14) with itself, we obtain

( ds

ds∗

)

= ǫ1(1 − v∗k∗
g − w∗k∗

n + u∗′), (3.15)

where ǫ1 = ±1. Using (3.15) in (3.14), we have

T = ǫ1T ∗. (3.16)

Taking inner product of first relation of (3.1) with (3.16), we obtain

ǫ1 = cosθ (3.17)

Using (3.17) and taking inner product of second relation of (3.1) with (3.16), we get

n = ǫ1 n∗. (3.18)

Case II. Let γ 6= 0. Then, we have

(u∗k∗
n + v∗τ∗

g + w∗′) 6= 0 (3.19)

1 − v∗k∗
g − w∗k∗

n + u∗′ = h(u∗k∗
n + v∗τ∗

g + w∗′). (3.20)

Differentiating (3.11) with respect to s∗ and using (2.3) and (3.1), we obtain

kgg
ds

ds∗
=

(

− knsinθ
ds

ds∗
+ δ′ − γk∗

n

)

T ∗ +
(

δk∗
g − γτ∗

g

)

g∗+

(

− kncosθ
ds

ds∗
+ δk∗

n + γ′
)

n∗,

(3.21)
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whereby comparing coefficients of T ∗ and n∗, we get

{

−knsinθ ds
ds∗

+ δ′ − γk∗
n = 0,

−kncosθ ds
ds∗

+ δk∗
n + γ′ = 0.

(3.22)

Using (3.22) in (3.21), we find

kgg
ds

ds∗
= (δk∗

g − γτ∗
g)g∗. (3.23)

By taking scalar product of (3.23) with itself, we have

( ds

ds∗

)2

(kg)2 =
(hk∗

g − τ∗
g)2

h2 + 1
, (3.24)

this gives

hk∗
g − τ∗

g

kg

6= 0 (3.25)

Therefore, we have

g = λg∗. (3.26)

Differentiating (3.26) with respect to s∗ and using (2.3), we find

τg

ds

ds∗
n = λ(−k∗

gT ∗ + τ∗
gn∗) + kg

ds

ds∗
T + λ′g∗. (3.27)

Taking scalar product of (3.27) with g and using second relation of (3.1), we get

λ′ = 0. (3.28)

Using (3.28) in (3.27), we get

τ g

ds

ds∗
n = λ (−k∗

gT ∗ + τ∗
gn∗) + kg

ds

ds∗
T. (3.29)

Rewriting (3.27) by using (3.10), we get

n
ds

ds∗
= P (s) T ∗ + Q(s) n∗, (3.30)

Using (3.19), (3.25) and (3.30), we get
k∗

g +hτ∗

g

τg
6= 0.

Thus proof is complete. �

Now, we have

Corollary 3.3. Let the pair {α, α∗} be a Bertrand D-pair curve satisfying (2.5).
(i) If α and α∗ are homothetic, then

τ g

kg

= ±
τ∗

g

k∗
g

(3.31)

(ii) If α and α∗ are not homothetic, then

τ g(h k∗
g − τ∗

g) = ± kg(h τ∗
g + k∗

g). (3.32)
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Proof: (i) Differentiating first, second and third relation of (3.4) with respect to s∗, and then taking
inner product with itself, we get

(

kg
2 + k2

n

)

( ds

ds∗

)2

= k∗
g

2 + k∗
n

2
, (3.33)

(

kg
2 + τ2

g

)

( ds

ds∗

)2

= k∗
g

2 + τ∗
g

2
, (3.34)

(

kn
2 + τ2

g

)

( ds

ds∗

)2

= k∗
n

2 + τ∗
g

2
. (3.35)

Using (3.33) in (3.35), we obtain

(

τ g
2 − k2

g

)

( ds

ds∗

)2

= τ∗
g

2 − k∗
g

2
. (3.36)

Dividing (3.36) by (3.34), we obtain

τ g
2k∗

g
2 − kg

2τ∗
g

2 = 0, (3.37)

which gives (3.31).

(ii) Differentiating the second relation of (3.6) with respect to s∗, and then taking inner product with
itself, we have

(

kg
2 + τ2

g

)

( ds

ds∗

)2

= k∗
g

2 + τ∗
g

2
. (3.38)

Using (3.24) in (3.38), we obtain

(k2
g + τ2

g)
(δ k∗

g − γ τ∗
g

kg

)2

= k∗
g

2 + τ∗
g

2
. (3.39)

Using (3.12) in (3.39), we obtain

τ g
2
(

h2k∗
g

2 + τ∗
g

2 − 2hk∗
gτ∗

g

)

= kg
2
(

h2τ∗
g

2 + k∗
g

2 + 2hk∗
gτ∗

g

)

, (3.40)

which gives (3.32). Whereby, proof is complete. �

If we take u∗ = w∗ = 0 in (2.5), we get the old parametrization of Bertrand partner D-curve given by
[11]

α(s) = α∗(s∗) + v∗(s∗)g∗(s∗). (3.41)

Now, we have

Corollary 3.4. Let the pair {α, α∗} be a Bertrand D-pair curve satisfying (3.41), then v∗ = 0 or v∗ =
1

k∗

g+hτ∗

g
.

Proof: Putting u∗ = w∗ = 0 in (3.3), we get

v∗ = 0. (3.42)

Putting u∗ = w∗ = 0 in third relation of (3.2), we find

v∗ =
1

k∗
g + hτ∗

g

. (3.43)

Thus proof is complete. �
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Theorem 3.5. Let α(s) and α∗(s∗) be a pair curve with arc length parameter s and s∗ completely lying
on S and S∗ in E

3, respectively. If pair curve {α, α∗} satisfying

u∗k∗
g − w∗τ∗

g + v∗′ = 0, −kn

( ds

ds∗

)

=

(

h′ − k∗
n(h2 + 1)

)

(h2 + 1)
, (3.44)

and (2.5). Then {α, α∗} is a Bertrand D-pair curve.

Proof: Let the assumptions of Theorem 3.3 hold.
Differentiating (2.5) with respect to s∗ and using (2.3), (3.2) and first equation of (3.44), we get

T
ds

ds∗
= A

(

hT ∗ + n∗
)

, (3.45)

where A = u∗k∗
n + v∗τ∗

g + w∗′.
Taking inner product of (3.45) with itself, we obtain

ds

ds∗
= ǫ1 A

√

h2 + 1, (3.46)

where ǫ1 = ±1.
Differentiating (3.45) with respect to s∗ and using (2.3), we get

(

kg g + kn n
)( ds

ds∗

)2

+ T
d2s

ds∗2
= a1 T ∗ + a2 g∗ + a3 n∗,

where,

a1 = hA′ + A
(

h′ − k∗
n), a2 = A

(

hk∗
g − τ∗

g

)

, a3 = A′ + h A k∗
n.

Taking cross product of (3.45) with (3.47), we find

(

kg n − kn g
)( ds

ds∗

)3

= A2
{

(

hk∗
g − τ∗

g

)(

h n∗ − T ∗
)

(3.47)

+
(

h′ − k∗
n(1 + h2)

)

g∗
}

.

Using (3.46) and the second condition of (3.44) in (3.47), we have

(

kg n − kn g
)( ds

ds∗

)3

= A2
(

hk∗
g − τ∗

g

)(

h n∗ − T ∗
)

− kn

( ds

ds∗

)3

g∗. (3.48)

Taking cross product of (3.45) with (3.48), we get

−
(

kg g + kn n
)( ds

ds∗

)4

= −A
{

A2
(

hk∗
g − τ∗

g

) (

h2 + 1
)

g∗

+kn

( ds

ds∗

)3
(

hn∗ − T ∗
)

}

.

(3.49)

Solving (3.48) and (3.49) for n, we find

(

k2
g + k2

n

)( ds

ds∗

)4

n = a4

(

h n∗ − T ∗)

+ a5 g∗, (3.50)

where

a4 = A
ds

ds∗

(

Akg(hk∗
g − τ∗

g) + k2
n

( ds

ds∗

)2)

,

a5 =
(

A3kn

(

hk∗
g − τ∗

g

)(

h2 + 1
)

− kn kg

( ds

ds∗

)4)

.
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From (3.48), we get

( ds

ds∗

)3

= ǫ1

A2
(

hk∗
g − τ∗

g

)√
h2 + 1

kg

. (3.51)

Using (3.46) and (3.51) in (3.50), we obtain

a6 n = a7

(

h n∗ − T ∗
)

, (3.52)

where

a6 = ǫ1

(

k2
g + k2

n

)

(

hk∗
g − τ∗

g

)√
h2 + 1

kg

, a7 = kg(hk∗
g − τ∗

g) + Ak2
n(h2 + 1).

Putting the value of
(

h n∗ − T ∗
)

from (3.52) in (3.48), we get

kn
2
[

kg

( ds

ds∗

)2

− A(hk∗
g − τ∗

g)
]

n − b1 g = −b1 g∗, (3.53)

where b1 = kn

[

Akg(hk∗
g − τ∗

g) + kn
2
(

ds
ds∗

)2]

.

Using (3.46) and (3.51) in (3.53), we obtain

( ds

ds∗

)2

= A
(hk∗

g − τ∗
g)

kg

. (3.54)

Putting (3.54) in (3.53), we obtain g = g∗. So, the Darboux frame element g of α coincides with g∗

of α∗ at the corresponding points of the curves, which complete the proof of Theorem. �

In [6], the new relation between Bertrand pair curve is defined as

α∗(s∗) = α(s) + u(s)T (s) + v(s)N(s) + w(s)B(s), (3.55)

where u(s), v(s) and w(s) are differentiable functions.
Now, using (2.1), (2.3), (3.44) of Theorem 3.3 and (3.55), we have

Corollary 3.6. Let α(s) and α∗(s∗) be two asymptotic Bertrand D-partner curves satisfying (2.5). Then,
we have

v∗′ + u∗k∗
g − w∗τ∗

g = 0, h′ = 0, (3.56)

and the Frenet frames (T, N, B) and (T ∗, N∗, B∗) of the curve α(s) and α∗(s∗) coincides with its Darboux
frames (T, g, n) and (T ∗, g∗, n∗), respectively, and k∗

g = ± k∗, τ∗
g = ± τ∗, and kg = ± k, τg = ± τ . Then

new parametrization of Bertrand partner D-curve becomes the Bertrand partner curve in Euclidean 3-
space, satisfying (3.55).

Proof: Let the curve α and α∗ be asymtotic, then kn = k∗
n = 0. Using this in (2.1) and (2.3), we find

kN = kg g, k∗N∗ = k∗
g g∗. (3.57)

From (3.57), we obtain

k = ± kg, k∗ = ± k∗
g , (3.58)

N = ± g, N∗ = ±, g∗. (3.59)

Taking cross product of first and second relation of (3.59) with T and T ∗, respectively, we get

n = ± B, n∗ = ± B∗. (3.60)

Now, again using the third relations of (2.1) and (2.3), we obtain

τ = ± τg, τ∗ = ± τ∗
g. (3.61)

Also, putting kn = k∗
n = 0 in (3.44), we get (3.56).

Thus, the proof is complete by combining (3.56) and (3.58)∼ (3.61). �
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4. Examples

Example 4.1. Consider the curve α∗(s∗) defined by

α∗(s∗) =
(

r cos
(s∗

r

)

, r sin
(s∗

r

)

,
√

R2 − r2
)

, (4.1)

lies on the surface

S∗(s∗, v∗) =
(

R sin(v∗) cos
(s∗

r

)

, R sin(v∗) sin
(s∗

r

)

, R cos(v∗)
)

, (4.2)

with Darboux frame (T ∗, g∗, n∗) given as






























T ∗ =
(

− sin
(s∗

r

)

, cos
(s∗

r

)

, 0
)

,

g∗ =
(

√
R2 − r2

R
cos

(s∗

r

)

,

√
R2 − r2

R
sin

(s∗

r

)

,
−r

R

)

,

n∗ =
(−r

R
cos

(s∗

r

)

,
−r

R
sin

(s∗

r

)

,
−

√
R2 − r2

R

)

,

(4.3)

where R and r is a constant.

Using (4.1), (4.3) and taking u∗ = 1, v∗ =
√

R2−r2

rR
s∗ and w∗ = 0 in (2.5), we obtain

α(s) =
(

α1, α2, α3

)

, (4.4)

where

α1 =
(

r +
(R2 − r2) s∗

r R2

)

cos
(s∗

r

)

− sin
(s∗

r

)

,

α2 =
(

r +
(R2 − r2) s∗

r R2

)

sin
(s∗

r

)

+ cos
(s∗

r

)

,

α3 =
√

R2 − r2
(

1 − s∗

R2

)

.

The curve α(s) lies on the surface

S(s∗, v∗) =
(

x(s∗, v∗), y(s∗, v∗), z(s∗, v∗)
)

, (4.5)

where

x(s∗, v∗) = r cos
(s∗

r

)

− sin
(s∗

r

)

+
(

√
R2 − r2s∗

rR

)

cos v∗ cos
(s∗

r

)

,

y(s∗, v∗) = r sin
(s∗

r

)

+ cos
(s∗

r

)

+
(

√
R2 − r2s∗

rR

)

cos v∗ sin
(s∗

r

)

,

z(s∗, v∗) =
√

R2 − r2 − s∗

R
cos v∗,

The Darboux frame (T, g, n) of α(s) is given by

T =
1√

U2 + 1

(

− U sin
(s∗

r

)

− r

R
cos

(s∗

r

)

, U cos
(s∗

r

)

− r

R
sin

(s∗

r

)

, −
√

R2 − r2

R

)

,

g =
(

−
√

R2 − r2

R
cos

(s∗

r

)

, −
√

R2 − r2

R
sin

(s∗

r

)

,
r

R

)

,

n =
1√

U2 + 1

(rU

R
cos

(s∗

r

)

− sin
(s∗

r

)

,
rU

R
sin

(s∗

r

)

+ cos
(s∗

r

)

,
U

√
R2 − r2

R

)

,

where U =
(

R + (R2−r2) s∗

r2 R

)

.

Then, the curve pair (α, α∗) is a Bertrand D-pair curve with g = −g∗.
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Example 4.2. Similar to Example 4.1, for u∗ = 1, v∗ =
√

R2−r2

rR
s∗, w∗ = 1

R
, the curve pair {α, α∗} can

be shown a Bertrand D-pair with g = −g∗, lying on S and S∗, where

α(s) =
(

α1, α2, α3

)

,

α1 =
(

r
(

1 − 1

R2

)

+
(R2 − r2) s∗

r R2

)

cos
(s∗

r

)

− sin
(s∗

r

)

,

α2 =
(

r
(

1 − 1

R2

)

+
(R2 − r2) s∗

r R2

)

sin
(s∗

r

)

+ cos
(s∗

r

)

,

α3 =
√

R2 − r2
(

1 − 1

R2
(1 + s∗)

)

,

S(s∗, v∗) =
(

x(s∗, v∗), y(s∗, v∗), z(s∗, v∗)
)

, (4.6)

x(s∗, v∗) =
(

1 − r

R2

)

r cos
(s∗

r

)

− sin
(s∗

r

)

+
(

√
R2 − r2s∗

rR

)

cos v∗ cos
(s∗

r

)

,

y(s∗, v∗) =
(

1 − r

R2

)

r sin
(s∗

r

)

+ cos
(s∗

r

)

+
(

√
R2 − r2s∗

rR

)

cos v∗ sin
(s∗

r

)

,

z(s∗, v∗) =
√

R2 − r2
(

1 − 1

R2

)

− s∗

R
cos v∗.

The Darboux frame (T, g, n) of α(s) can be obtained as

T =
1√

A2 + 1

(

A sin
(s∗

r

)

− r

R
cos

(s∗

r

)

, −A cos
(s∗

r

)

− r

R
sin

(s∗

r

)

, −
√

R2 − r2

R

)

,

g =
(

−
√

R2 − r2

R
cos

(s∗

r

)

, −
√

R2 − r2

R
sin

(s∗

r

)

,
r

R

)

,

n =
1√

A2 + 1

(

− rA

R
cos

(s∗

r

)

− sin
(s∗

r

)

, −rA

R
sin

(s∗

r

)

+ cos
(s∗

r

)

, −A
√

R2 − r2

R

)

,

where A =
(

− R
(

1 + s∗

r2

)

+ 1
R

(s∗ + 1)
)

.

Remark 4.3. The surface S in above examples can be obtained from

S(s∗, v∗) = α∗(s∗) + u∗(s∗, v∗) T ∗(s∗) + v∗(s∗, v∗) g∗(s∗) + w∗(s∗, v∗) n∗(s∗), (4.7)

In Example 4.1, by putting u∗(s∗, v∗) = 1, v∗(s∗, v∗) = s∗ cos v∗

r
, w∗(s∗, v∗) = 0 in (4.7), we get (4.5).

In Example 4.2, by putting u∗(s∗, v∗) = 1, v∗(s∗, v∗) = s∗ cos v∗

r
, w∗(s∗, v∗) = 1

R
in (4.7), we get (4.6).

Figure 1: The black graphic is α∗ and the red graphic is α of Example 4.1
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Figure 2: Curve α∗ on S∗ and the curve α on S of Example 4.1
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