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Imbeddedness and Direct Sum of Uniserial Modules
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abstract: In this paper, we study a generalization of h-pure submodules as well as some other closely
related concepts. Here, we examine the extent of this generalization in several ways. We then use this to give
a characterization of the imbedded-complete modules. It is found that imbeddedness can considerably more
abundant than h-purity on direct sum of uniserial modules.
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1. Introduction and backgrounds

Let R be any ring with unity. A uniserial module M is a module over a ring R, whose submodules
are totally ordered by inclusion. This means simply that for any two submodules N1 and N2 of M , either
N1 ⊆ N2 or N2 ⊆ N1. A module M is called a serial module if it is a direct sum of uniserial modules. An
element x ∈ M is uniform, if xR is a non-zero uniform (hence uniserial) module and for any R-module
M with a unique decomposition series, d(M) denotes its decomposition length.

Modules are the natural generalizations of abelian groups. Many authors interested in module theory
have worked on generalizing the theory of abelian groups. In fact, the theory of modules is highly
motivated by abelian groups. The results which hold good for abelian groups need not be true for
modules. By putting some restrictions on rings/modules these results hold good for modules too. In
1976 Singh [14] introduced a class of modules called T AG-modules, defined by satisfying two properties
relating to uniserial modules while the rings were associative with unity.

(I) Every finitely generated submodule of any homomorphic image of M is a direct sum of uniserial
modules.

(II) Given any two uniserial submodules U and V of a homomorphic image of M , for any submodule
W of U , any non-zero homomorphism f : W → V can be extended to a homomorphism g : U → V ,
provided the composition length d(U/W ) ≤ d(V/f(W )).

It was shown that the theory of these modules very closely paralleled the theory of torsion abelian
groups; for this reason they were referred to as T AG-modules. In 1987 Singh showed that the second
property, with minimal additional hypotheses, can be deduced from the first and studied the modules
satisfying only the first property and called them QT AG-modules. The study of QT AG-modules and
their structure began with work of Singh in [15]. This work, executed by many authors, clearly parallels
the earlier work on torsion abelian groups. This is a very fascinating structure that has been the subject
of research of many authors. Different notions and structures of QT AG-modules have been studied, and
a theory was developed, introducing several notions, interesting properties, and different characteriza-
tions of submodules. Many interesting results have been obtained, but still there remains a lot to explore.
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All rings below are assumed to be associative and with nonzero identity element; all modules are
assumed to be unital QT AG-modules. For a uniform element x ∈ M, e(x) = d(xR) and HM (x) =

sup

{

d

(

yR

xR

)

| y ∈ M, x ∈ yR and y uniform

}

are the exponent and height of x in M, respectively. For

k ≥ 0, Hk(M) = {x ∈ M | HM (x) ≥ k} denotes the submodule of M generated by the elements of height
at least k and for some submodule N of M , Hk(M) = {x ∈ M | d(xR/(xR ∩ N)) ≤ k} is the submodule
of M generated by the elements of exponents at most k. The module M is said to be bounded, if there
exists an integer k such that HM (x) ≤ k for every uniform element x ∈ M .

Let us denote by M1, the submodule of M , containing elements of infinite height. The module M is
called separable if M1 = 0. The module M is h-divisible if M = M1 = ∩∞

k=0Hk(M). A submodule N of
M is h-pure in M if N ∩ Hk(M) = Hk(N), for every integer k ≥ 0. A submodule N of M is h-neat in
M if N ∩ H1(M) = H1(N). The minimal h-neat submodule K of M containing N is called h-neat hull
of N . For these concepts and related results, we refer the readers to [8].

The sum of all simple submodules of M is called the socle of M , denoted by Soc(M) and a submodule
S of Soc(M) is called a subsocle of M . For any k ≥ 0, Sock(M) is defined inductively as follows:
Soc0(M) = 0 and Sock+1(M)/Sock(M) = Soc(M/Sock(M)). A submodule N of M is K-high [11]
in M , if it is maximal with the property of being disjoint from K. It is well-known that all K-high
submodules of M are bounded if and only if there exists k ∈ Z+ such that (K + Soc(Hk(M)))/K is
finitely generated and K contains the socle of the h-divisible submodule of M .

Imitating [12], the submodules Hk(M), k ≥ 0 form a neighborhood system of zero, thus a topology
known as h-topology arises. Closed modules are also closed with respect to this topology. Thus, the
closure of N ⊆ M is defined as N = ∩∞

k=0(N + Hk(M)). Therefore, the submodule N ⊆ M is closed with
respect to the h-topology if N = N .

Mehran et al. [13] proved that the results which hold for T AG-modules are also valid for QT AG-
modules. Many results, stated in the present paper, are clearly motivated from the papers [6,7]. Most of
our notations and terminology will be standard being in agreement with [2] and [3].

2. ℓ-imbedding and h-purity

A submodule N of a QT AG-module M is called imbedded if there exists a function ℓ : Z+ → Z+

such that N ∩ Hℓ(k)(M) ⊆ Hk(N) for each k ∈ Z+. Here, ℓ is called an imbedding function for N in
M . Let ℓ be an imbedding function for N in M then N is called ℓ-imbedded submodule of M . Trivially,
ℓ-imbedded submodules are exactly h-pure submodules. These ℓ-imbedded submodules were originally
defined and carefully explored in [9]. But there are some other closely related concepts which have
been of interest: recall that a QT AG-module M is called ℓ-quasi-complete if the closure N of every
ℓ-imbedded submodule N of M , is an imbedded submodule of M ; while an ℓ-imbedded submodule N
of the QT AG-module M is said to be an ℓ-hull (or minimal ℓ-imbedding) of a submodule T in M if
N is a minimal ℓ-imbedded submodule of M containing T . The basic properties of these concepts and
their interrelationships were explored, and in particular, ℓ-quasi-complete modules were characterized
according to the existence of a minimal ℓ-imbedded submodule. Our purpose in this article is to continue
the exploration of these ℓ-imbedded submodules, and show that they differ significantly from h-pure sub-
modules. It is worthwhile noticing that some of the results in this direction are already announced in [10].

To develop the study, we defining the following.

Definition 2.1. A submodule T of a QT AG-module M is ℓ-dense in M if M/N is h-divisible for some

ℓ-imbedded submodule N of M containing T .

Now we prove the following proposition.

Proposition 2.2. Let N be an ℓ-imbedded submodule of a QT AG-module M such that Soc(Hk(M)) ⊂ N
for some k ∈ Z+. Then Hℓ(k+1)−1(M) ⊂ N .
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Proof: Clearly, Soc(Hℓ(k+1)−1(M)) ⊂ Soc(Hk(M)) ⊂ N , and thus Socn(Hℓ(k+1)−1(M)) ⊂ N , for some
n ∈ Z+. Let x be any uniform element in M such that d(xR/x′R) = n + 1 and d(x′R) = 1. Let
y ∈ M such that d(yR/xR) = ℓ(k + 1) − 1. Then x′ ∈ N such that d(xR/x′R) = 1. Therefore,
x′ = y′ = z′, where d(xR/x′R) = 1, d(yR/y′R) = ℓ(k + 1) and d(zR/z′R) = k for some z ∈ N . Hence
x − z′ ∈ Soc(Hk(M)) ⊂ N such that d(zR/z′R) = k. Therefore, x ∈ N and we are done. �

Next, we concentrate on the following theorem.

Theorem 2.3. Let T be a submodule of a QT AG-module M . Then T is contained in no proper ℓ-imbedded

submodule of M if and only if T is ℓ-dense in M , and Soc(Hk(M)) ⊂ T , for some k ∈ Z+.

Proof: Suppose T is ℓ-dense, Soc(Hk(M)) ⊂ T , and N be an ℓ-imbedded submodule N of M containing
T . Then Hℓ(k+1)−1(M) ⊂ N , so that M/N is bounded and h-divisible, and N = M . Clearly, if no proper
ℓ-imbedded submodule contains T , T is ℓ-dense. Since all h-pure submodules are exactly ℓ-imbedded,
Soc(Hk(M)) ⊂ T for some k ∈ Z+. The proof is over. �

It is interesting to note that all ℓ-imbedded submodules are h-neat and thus, the h-neat hulls of an
ℓ-imbedded submodule are ℓ-imbedded. So, we characterize the ℓ-dense submodules of a QT AG-module.

Theorem 2.4. Let T be a submodule of a QT AG-module M . Then T is ℓ-dense in M if and only if

Soc(Hk(M)) ⊂ T + Hℓ(k+2)−1(M), for some k ∈ Z+.

Proof: Suppose T satisfies the condition, and let N be an ℓ-imbedded submodule of M containing T
such that x + N ∈ Soc(M/N). Since N is h-neat in M , we may assume that x ∈ Soc(Hk(M)) for some
k. Then x + y′ ∈ T such that d(yR/y′R) = ℓ(k + 2) − 1 for some y ∈ M , and x + N ∈ Hℓ(k+2)−1(M/N).
Suppose x + N ∈ Hℓ(n)−1(M/N), and let x + N = z′ + N such that d(zR/z′R) = ℓ(n) − 1. Then z′ ∈ N
such that d(zR/z′R) = ℓ(n), so z′ = a′ such that d(zR/z′R) = ℓ(n) and d(aR/a′R) = n for some a ∈ N .

Now, z′−a′ ∈ Soc(Hn−1(M)) where d(zR/z′R) = ℓ(n)−1 and d(aR/a′R) = n−1, so that z′−a′ = b′+c
where d(zR/z′R) = ℓ(n) − 1, d(aR/a′R) = n − 1 and d(bR/b′R) = ℓ(n + 1) − 1 for some b ∈ M , c ∈ T .
Therefore (z′ − x) − a′ = b′ − x + c ∈ N where d(zR/z′R) = ℓ(n) − 1, d(aR/a′R) = n − 1 and
d(bR/b′R) = ℓ(n + 1) − 1. Thus, HM/N (x + N) ≥ ℓ(n + 1) − 1. But x + N ∈ Hω(M/N) and x + N is
arbitrary, hence M/N must be h-divisible, as promised.

Conversely, suppose Soc(Hk(M)) * T + Hℓ(k+2)−1(M), and let Soc(Hk(M)) = U ⊕ V , where U =
Soc(Hk(M)) ∩ Hℓ(k+2)−1(M). Consider a submodule L of M such that L/Hℓ(k+2)−1(M) is W -high in
M , where W = (U ⊕ Hℓ(k+2)−1(M))/Hℓ(k+2)−1(M). By [4, Theorem 2.1], L is U -high in M . Since
U ⊂ Hk(M), L is (k + 1)-pure in M . Note that if x ∈ L ∩ Hℓ(k+r)(M), for r > 1 and L is ℓ-imbedded in
M . Then Hℓ(k+2)−1(M)) ⊂ L and x = y′ where d(yR/y′R) = r − 1, for some y ∈ L ∩ Hk+1(M). Hence
y = w′ such that d(wR/w′R) = k+1, w ∈ L and x = Hr−1(w′R) = Hk+r(wR) where d(wR/w′R) = k+1.
Thus, by [4, Theorem 2.3], L/T is bounded and so, L/T is not h-divisible, to get the claim. �

Definition 2.5. Let T be a submodule of a QT AG-module M . An ℓ-imbedded submodule N of M is said

to be an h-neat-imbedded hull of T if L = N , for some ℓ-imbedded submodule L of M containing T .

And so, we will verify the validity of the following theorem.

Theorem 2.6. Let T be a submodule of a QT AG-module M and N be an ℓ-imbedded submodule of M
containing T . Then N is an h-neat-imbedded hull of T if and only if Soc(Hk(N)) ⊂ T , for some k, and

Soc(N) ⊂ T , where T is the closure of T in the h-topology.

Proof: As we have noted earlier, N is an ℓ-hull of T in M if and only if Soc(N) ⊂ T + Hk(M), for all
k, hence Soc(N) ⊂ T , as claimed. This ends the proof. �

The study of subsocles is an important part of the theory of QT AG-modules. As defined in [4], a
subsocle S of a QT AG-module M is called h-purifiable in M if and only if there is an h-pure submodule
N of M such that Soc(N) = S. It is evident that a subsocle S supports the submodule N of M if and
only if Soc(N) = S.

We continue the study with the following corollary.
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Corollary 2.7. Let S be a subsocle of the QT AG-module M such that S is contained in an h-neat-

imbedded hull N . Then S is h-purifiable in M .

Proof: If a ∈ Soc(N), then there exists b ∈ S such that a+b = c′ where d(cR/c′R) = ℓ(k) for some c ∈ M
and k ∈ Z+. Thus z′ ∈ Soc(N) ∩ Hℓ(k)(M) ⊂ Soc(Hk(N)) ⊂ S. Therefore, a ∈ S, and Soc(N) = S. �

Following [9], a submodule N of a QT AG-module M is called regularly imbedded in M with index k,
if N ∩ Hk+r(M) ⊆ Hr(N ∩ Hk(M)) for all non-negative integer r. Evidently, if N is regularly imbedded
with index k, then N ∩Hk+r(M) ⊆ Hr(N) gives that the regularly imbedded submodules are ℓ-imbedded
for some ℓ : Z+ → Z+. Moreover, the regularly imbedded submodules of index zero are exactly the h-pure
submodules.

Now we are ready to deal with the following theorem.

Theorem 2.8. Let M be a separable QT AG-module, and S be a subsocle of M . The following are

equivalent:

(i) S supports a regularly imbedded submodule of M ;

(ii) ℓ-imbeddedness is S-high in M ;

(iii) S is h-purifiable in M .

Proof: (i) ⇒ (ii). Let R be a regularly imbedded submodule of M , then Soc(R) = S. Thus, by
[10, Theorem 5.5], there is an h-pure submodule N of M such that Hk(N) ⊂ R ⊂ N , for some k.
Consequently, Soc(Hk(N)) ⊂ S.

(ii) ⇒ (iii). If N is h-pure in M and Soc(Hk(N)) ⊂ S, then all S-high submodules of N are bounded.
Thus, by [4, Theorem 2.2], S supports an h-pure submodule of N , which is then h-pure in M .

The implication (iii) ⇒ (i) is obvious. �

Recall that a QT AG-module M is called h-pure-complete, if for every subsocle of M supports an h-
pure submodule of M . It is easy to see that M is h-pure-complete if and only if Hk(M) is h-pure-complete
for every k ∈ Z+.

Analogous to h-pure-complete module, we will now study a little different module class.

Definition 2.9. A separable QT AG-module M is called imbedded-complete, if for every subsocle of M
supports an imbedded submodule of M .

So, we are ready to formulate the following.

Theorem 2.10. Let M be an imbedded-complete QT AG-modules. Then M properly contains the h-pure-

complete modules.

Proof: Let Un = 〈un〉 be a uniserial module of exponent 2n. Set P =
⊕

1
〈un〉, Q =

⊕

2
〈un〉, where 1

and 2 denote summation over the odd and even integers. Define X =
∏

1
〈un〉, Y =

∏

2
〈un〉, and write

K = P ⊕ Y , for some submodule K of M . Assume that N is an ℓ-imbedded submodule of M such that
M = 〈N, Q〉, where ℓ(n) = n + 1.

Let S be a subsocle of M . Then Soc(M) = Soc(P )⊕Soc(Y ), and consequently, S = (Soc(Y )∩S)⊕K.
Now N is closed, and hence h-pure-complete, so Soc(Y ) ∩ S supports an h-pure pure submodule L of
N , which is then imbedded in M . Also, (K + L)/L ⊂ Soc(M/L), and (K + L)/L ≃ K is countably
generated. From the h-pure-completeness of M/L, there is an h-pure submodule T/L of M/L such that
S = Soc(T/L). Thus, T ⊂ M and S = Soc(T ). If a ∈ Soc(T ), then a + L ∈ Soc(T/L), so a + L = b + L,
for some b ∈ K, and a − b ∈ Soc(L) = Soc(Y ) ∩ S. Therefore, a = b + c, some c ∈ Soc(Y ) ∩ S and a ∈ S,
as required. �

The following example demonstrates that the sum of minimal submodules of Hk(M) is not imbedded-
complete.
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Example: There is an imbedded-complete module M and k ∈ Z+ such that Soc(Hk(M)) is not
imbedded-complete.

Let M be any imbedded-complete module such that d(Hk(M)) = 1 and M/Hk(M) is a direct sum
of uniserial modules. Let N be the closed, and hence h-pure-complete in M . It is readily checked that
M/N supports an h-pure submodule L of N such that M/N = Soc(L). In fact, Hk(M/N) = 0, so that
Hk(M) remains imbedded submodule of M . Now, for any uniform element x ∈ Soc(Hk(M1)), we get
x ∈ Hk(M1). It follows that Soc(M1) = Soc(Hk(M1)), and hence M is imbedded-complete.

On the other hand, d(Hk(Soc(Hk(M))) = 1. Therefore, Soc(Hk(M)) is not imbedded in M , and
consequently, it is not imbedded-complete. We are finished.

We come now to a significant characterization of the imbedded-complete module in terms of minimal
imbedded submodules.

Theorem 2.11. Let S be a subsocle of the QT AG-module M . Then M is imbedded-complete if and only

if S is contained in an h-neat-imbedded hull.

Proof: The sufficiency follows directly from Corollary 2.7.
As for the necessity, since M is imbedded-complete, and S ⊂ Soc(M), then S = Soc(N), for some

ℓ-imbedded submodule N of M . Let L be an h-neat hull of N . Then S = Soc(L), and L is an ℓ-imbedded
in M . Letting K be the h-neat hull in M such that S ⊂ K ⊂ L, we get K = L. Finally, the definition
formulated allows us to conclude that N is indeed an h-neat-imbedded hull of S, as desired. �

3. Direct sum of uniserial modules

The class of QT AG-modules over a ring R need not be closed under direct sums of uniserial modules.
It is well-known by [14] that a QT AG-module M is a direct sum of uniserial modules if and only if M
is the union of an ascending chain of bounded submodules. This indicates that M is a direct sum of
uniserial modules if and only if Soc(M) =

⊕

k∈ω

Sk and HM (x) = k for every x ∈ Sk.

Likewise, a theorem of [1] states the problem of detecting finite direct sums of uniserial modules.
Recently [5], some new achievements in this theme for other important sorts of QT AG-modules are
established, which possess the following property: M/S is a direct sum of uniserial modules such that
S = Soc(N) for some h-pure submodules N of M , then M is a direct sum of uniserial modules and N is
a direct summand of M .

We now strengthen the idea of direct sums of uniserial modules, and see that the assumption of
imbeddedness can replace that of h-purity in certain circumstances.

Theorem 3.1. Let T be a submodule of the QT AG-module M such that M/T is a direct sum of uniserial

modules. If N is an ℓ-imbedded submodule of M containing T such that Soc(Hk(N)) ⊂ T , for some

k ∈ Z+. Then M/N is a direct sum of uniserial modules.

Proof: Consider the canonical homomorphism

f : (Soc(Hℓ(k)(M)) + T )/T → (Soc(Hℓ(k)(M)) + N)/N

Let x ∈ Soc(Hℓ(k)(M)) be any uniform element such that HM/N (x + N) ≥ ℓ(n + 2) for some n ≥ ℓ(k).
Then x+ N = y′ + N where d(yR/y′R) = ℓ(n + 2) and y ∈ M . Therefore, y′ ∈ N such that d(yR/y′R) =
ℓ(n+2)+1. Since N is ℓ-imbedded in M , y′ = z′ where d(yR/y′R) = ℓ(n+2)+1 and d(zR/z′R) = n+2,
for z ∈ N . Thus y′ − z′ ∈ Soc(Hn+1(M)) where d(yR/y′R) = ℓ(n + 2) and d(zR/z′R) = n + 1. Let now
u be an uniform element of y′ + N such that d(yR/y′R) = ℓ(n + 2). Then y′ + N ∈ Soc(Hn+1(M)) ⊂
Soc(Hℓ(k)(M)). Thus we obtain: x − u ∈ N ∩ Soc(Hℓ(k)(M)) ⊂ Soc(Hk(M)) ⊂ T . It follows that
x + T = u + T , and therefore, HM/T (x + T ) ≥ n + 1.

Now since (Soc(Hℓ(k)(M)) + T )/T is the union of an ascending chain of bounded submodules, so is
(Soc(Hℓ(k)(M)) + N)/N .

But
Soc(Hℓ(ℓ(k)+1)(M/N)) ⊂ (Soc(Hℓ(k)(M)) + N)/N,
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therefore, Hℓ(ℓ(k)+1)(M/N) is a direct sum of uniserial modules, and hence M/N is a direct sum of
uniserial modules, as stated. The proof of the theorem is completed. �

As a consequence, we have the following.

Corollary 3.2. Let T be a submodule of the QT AG-module M such that M/T is a direct sum of uniserial

modules. If N is a minimal ℓ-imbedded submodule of M containing T . Then M/N is a direct sum of

uniserial modules.

Proof: It relies on the same idea as in Theorem 2.3 and 3.1. �

The above assertion can be extended to the following.

Corollary 3.3. Let T be a submodule of the QT AG-module M such that T ⊂ Soc(M) and M/T is a

direct sum of uniserial modules. If T supports an ℓ-imbedded submodule N of M . Then M/N is a direct

sum of uniserial modules.

In particular, if L is an h-neat hull of N , then M/L is a direct sum of uniserial modules.

Proof: The first part follows since T = Soc(N).
As for the second part, since L is an h-neat hull of N , and N is ℓ-imbedded in M , then L is also

ℓ-imbedded in M , and T = Soc(L). Thus, M/L is a direct sum of uniserial modules, as needed. �

4. Open problems

In the last we would like to state some open problems which are yet to be explored.

Problem 1. Is a direct summand of an imbedded-complete module again an imbedded-complete module?

Problem 2. Suppose M is a QT AG-module with M/M1 a direct sum of of uniserial modules. Does it
follow that (M/N)1 a direct sum of of uniserial modules, whenever N is ℓ-imbedded in M?

Problem 3. If M is a direct sum of uniserial modules. What are the conditions under which any
ℓ-imbedded submodule between M and Hk(M) is uniserial?
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