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On some realizable metabelian 5-groups

Fouad Elmouhib , Mohamed Talbi and Abdelmalek Azizi

abstract: Let G be a 5-group of maximal class and γ2(G) = [G, G] its derived group. Assume that the
abelianization G/γ2(G) is of type (5, 5) and the transfers VH1→γ2(G) and VH2→γ2(G) are trivial, where H1

and H2 are two maximal normal subgroups of G. Then G is completely determined with the isomorphism
class groups of maximal class. Moreover the group G is realizable with some fields k, which is the normal
closure of a pure quintic field.

Key Words: Groups of maximal class, metabelian 5-groups, transfer, 5-class groups.

Contents

1 Introduction 1

2 On the 5-class group of maximal class 2

2.1 On the transfer concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Main results 3

3.1 Invariants of metabelian 5-group of maximal class . . . . . . . . . . . . . . . . . . 3
3.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Numerical examples 6

1. Introduction

The coclass of a p-group G of order pn and nilpotency class c is defined as cc(G) = n−c, and a p-group
G is called of maximal class, if it has cc(G) = 1. These groups have been studied by various authors, by
determining there classification, the position in coclass graph [6] [3], and the realization of these groups.
Blackburn’s paper [2], is considered as reference of the basic materials about these groups of maximal
class. Eick and Leendhan-Green in [6] gave a classification of 2-groups. Blackburn’s classification in
[2], of the 3-groups of coclass 1, implies that these groups exhibit behaviour similar to that proved for
2-groups. The 5-groups of maximal class have been investigated in detail in [3], [4], [5], [9], [14].
Let G be a metabelian p-group of order pn, n ≥ 3, with abelianization G/γ2(G) is of type (p, p), where
γ2(G) = [G, G] is the commutator group of G. The subgroup Gp of G, generated by the pth powers is
contained in γ2(G), which therefore coincides with the Frattini subgroups φ(G) = Gpγ2(G) = γ2(G).
According to the basis theorem of Burnside [ [1], Theorem 1.12], the group G can thus be generated by
two elements x and y, G =< x, y >. If we declare the lower central series of G recursively by

{

γ1(G) = G

γj(G) = [γj−1(G), G] for j ≥ 2,

Then we have Kaloujnine’s commutator relation [γj(G), γl(G)] ⊆ γj+l(G), for j, l ≥ 1 [ [2], Corollary 2],
and for an index of nilpotence c ≥ 2 the series

G = γ1(G) ⊃ γ2(G) ⊃ ..... ⊃ γc−1(G) ⊃ γc(G) = 1

becomes stationary.
The two-step centralizer

χ2(G) = {g ∈ G | [g, u] ∈ γ4(G)for all u ∈ γ2(G)}
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of the two-step factor group γ2(G)/γ4(G), that is the largest subgroup of G such that [χ2(G), γ2(G)] ⊂
γ4(G). It is characteristic, contains the commutator subgroup γ2(G). Moreover χ2(G) coincides with G
if and only if n = 3. For n ≥ 4, χ2(G) is one of the p + 1 normal subgroups of G [ [2], Lemma 2.5].
Let the isomorphism invariant k = k(G) of G, be defined by [χ2(G), γ2(G)] = γn−k(G), where k = 0 for
n = 3 and 0 ≤ k ≤ n − 4 if n ≥ 4, also for n ≥ p + 1 we have k = min{n − 4, p − 2} [ [11], p.331].
k(G) provides a measure for the deviation from the maximal degree of commutativity [χ2(G), γ2(G)] = 1
and is called defect of commutativity of G.
With a further invariant e, it will be expressed, which factor γj(G)/γj+1(G) of the lower central series is
cyclic for the first time [13], and we have e + 1 = min{3 ≤ j ≤ m | 1 ≤ |γj(G)/γj+1| ≤ p}.
In this definition of e, we exclude the factor γ2(G)/γ3(G), which is always cyclic. The value e = 2 is
characteristic for a group G of maximal class.

By G
(n)
a (z, w) we denote the representative of an isomorphism class of the metabelian p-groups G, which

satisfies the relations of theorem 2.1, with a fixed system of exponents a, w and z.
In this paper we shall prove that some metabelian 5-groups are completely determined with the isomor-
phism class groups of maximal class, furthermore they can be realized.
For that we consider K = Q( 5

√
p, ζ5), the normal closure of the pure quintic field Γ = Q( 5

√
p), and also a

cyclic Kummer extension of degree 5 of the 5th cyclotomic field K0 = Q(ζ5), where p is a prime number,
such that p ≡ −1(mod 25). According to [7], if the 5-class group of K, denoted CK,5, is of type (5, 5),
we have that the rank of the subgroup of ambiguous ideal classes, under the action of Gal(K/K0) = 〈σ〉,
denoted C

(σ)
K,5, is rank C

(σ)
K,5 = 1. Whence by class field theory the relative genus field of the extension

K/K0, denoted K∗ = (K/K0)∗, is one of the six cyclic quintic extension of K.

By F
(1)
5 we denote the Hilbert 5-class field of a number field F . Let G = Gal

(

(K∗)
(1)
5 /K0

)

, we show

that G is a metabelian 5-group of maximal class, and has two maximal normal subgroups H1 and H2,
such that the transfers VH1→γ

2
(G) and VH2→γ

2
(G) are trivial. Moreover G is completely determined with

the isomorphism class groups of maximal class.
The theoretical results are underpinned by numerical examples obtained with the computational number
theory system PARI/GP [16].

2. On the 5-class group of maximal class

Let G be a metabelian 5-group of order 5n, such that G/γ2(G) is of type (5, 5), then G admits six
maximal normal subgroups H1, ..., H6, which contain the commutator group γ2(G) as a normal subgroup
of index 5. We have that χ2(G) is one of the groups Hi and we fix χ2(G) = H1. We have the following
theorem

Theorem 2.1. Let G be a metabelian 5-group of order 5n where n ≥ 5, with the abelianization G/γ2(G)
is of type (5, 5) and k = k(G) its invariant defined before. Assume that G is of maximal class, then G can

be generated by two elements, G =< x, y >, be selected such that x ∈ G \ χ2(G) and y ∈ χ2(G) \ γ2(G).
Let s2 = [y, x] ∈ γ2(G) and sj = [sj−1, x] ∈ γj(G) for j ≥ 3. Then we have:

(1) s5
js10

j+1s10
j+2s5

j+3sj+4 = 1 for j ≥ 2.

(2) x5 = sw
n−1 with w ∈ {0, 1, 2, 3, 4}.

(3) y5s10
2 s10

3 s5
4s5 = sz

n−1 with z ∈ {0, 1, 2, 3, 4}.

(4) [y, s2] =
k
∏

i=1

s
an−i

n−i with a = (an−1, ...an−k) exponents such that 0 ≤ an−i ≤ 4.

Proof. See [ [12], Theorem 1] for p = 5. �

The six maximal normal subgroups H1....H6 are arranged as follows:
H1 = 〈y, γ2(G)〉 = χ2(G), Hi = 〈xyi−2, γ2(G)〉 for 2 ≤ i ≤ 6. The order of the abelianization of each Hi,
for 1 ≤ i ≤ 6, is given by the following theorem.
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Theorem 2.2. Let G, Hi and the invariant k as before. Then for 1 ≤ i ≤ 6, the order of the commutator

factor groups of Hi is given by:

(1) If n = 2 we have : |Hi/γ2(Hi)| = 5 for 1 ≤ i ≤ 6.

(2) If n ≥ 3 we have : |Hi/γ2(Hi)| = 52 for 2 ≤ i ≤ 6, and |H1/γ2(H1)| = 5n−k−1

Proof. See [ [10], Theorem 3.1] for p = 5. �

Lemma 2.3. Let G be a 5-group of order |G| = 5n, n ≥ 4. Assume that the commutator group G/γ2(G)
is of type (5, 5). Then G is of maximal class if and only if G admits a maximal normal subgroup with

factor commutator of order 52. Furthermore G admits at least five maximal normal subgroups with factor

commutator of order 52.

Proof. Assume that G is of maximal class, then by theorem 2.2, we conclude that G has five maximal
normal subgroups with the order of commutator factor is 52 if n ≥ 4, and has six when n = 3. Conversely,
Assume that cc(G) ≥ 2, the invariant e defined before is greater than 3, and since each maximal normal
subgroup H of G verify |H/γ2(H)| ≥ 5e we get that |H/γ2(H)| > 52

�

2.1. On the transfer concept

.

Let G be a group and let H be a subgroup of G. The transfer VG→H from G to H can be decom-
posed as follows:

G //

��

H/γ2(H)

G/γ2(G)

VG→H

88
q
q
q
q
q
q
q
q
q
q

Definition 2.4. Let G be a group, H be a normal subgroup of G, and let g ∈ G such that, f is the order

of gH in G/H, r = [G:H]
f

and g1, ....gr be a representative system of G/H, then the transfer from G to

H, noted VG→H , is defined by:

VG→H : G/γ2(G) −→ H/γ2(H)
gγ2(G) −→ ∏r

i=1 g−1
i gf giγ2(H)

In the special case that G/H is cyclic group of order 5 and G = 〈h, H〉, then the transfer VG→H is
given as:

(1) If g ∈ H ; then VG→H(gγ2(G)) = g1+h+h2+h3+h4

γ2(H)

(2) VG→H(hγ2(G)) = h5γ2(H)

3. Main results

In this section we investigate the purely group theoretic results to determine the invariants of metabelian
5-group of maximal class developed in theorem 2.1. Furthermore we show that a such metabelian 5-group
is realized by the Galois group of some fields tower.

3.1. Invariants of metabelian 5-group of maximal class

.

In this paragraph, we keep the same hypothesis on the group G and the generators G = 〈x, y〉, such
that x ∈ G \ χ2(G) and y ∈ χ2(G) \ γ2(G). The six maximal normal subgroups of G are as follows:
H1 = χ2(G) = 〈y, γ2(G)〉 and Hi = 〈xyi−2, γ2(G)〉 for 2 ≤ i ≤ 6.
In the case that the transfers from two subgroups Hi and Hj to γ2(G) are trivial, we can determine
completely the 5-group G.
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Proposition 3.1. Let G be a metabelian 5-group of maximal class of order 5n, n ≥ 4. If the transfers

Vχ
2

(G)→γ
2
(G) and VH2→γ

2
(G) are trivial, then n ≤ 6 and γ2(G) is of exponent 5. Furthermore:

- If n = 6 then G ∼ G
(6)
a (1, 0) where a = 0 or 1.

- If n = 5 then G ∼ G
(5)
a (0, 0) where a = 0 or 1.

- If n = 4 then G ∼ G
(4)
0 (0, 0).

Proof. Assume that n ≥ 7, then γ5(G) = 〈s5, γ6(G)〉, because G is of maximal class and |γ5(G)/γ6(G)| =
5. By [ [2], lemma 3.3] we have y5s5 ∈ γ6(G), thus γ5(G) = 〈s4

5, γ6(G)〉 = 〈y5s5s4
5, γ6(G)〉 = 〈y5, γ6(G)〉,

and since Vχ
2

(G)→γ
2
(G)(y) = y5 = 1, because the transfers are trivial by hypothesis, we get that

γ5(G) = γ6(G), which is impossible, whence n ≤ 6 and According to [ [2], lemma 3.2], γ2(G) is of exponent
5.
If n = 6, we have Vχ

2
(G)→γ

2
(G) and VH2→γ

2
(G) are trivial, so by theorem 2.1 we obtain x5 = sw

5 = 1
which imply w = 0, because 0 ≤ w ≤ 4. Since γ2(G) is of exponent 5, we have s5

2 = 1 and by theorem
2.1 the relation s5

4s10
5 s10

6 s5
7s8 = 1 gives s5

4 = 1, also s5
3s10

4 s10
5 s5

6s7 = 1 gives s5
3 = 1. We replace in

y5s10
2 s10

3 s5
4s5 = sz

5 and we get s5 = sz
5, whence z = 1. We have [χ2(G), γ2(G)] ⊂ γ6−k(G) ⊂ γ4(G) then

6 − k ≥ 4, and 0 ≤ k ≤ 2, thus [y, s2] = sαβ
4 , a = (α, β). If k = 0, then a = 0 and G ∼ G

(6)
0 (1, 0), if k = 1

then a = 1 and G ∼ G
(6)
1 (1, 0) and if k = 2 then G ∼ G

(6)
a (1, 0).

If n = 5, we have [χ2(G), γ2(G)] ⊂ γ5−k(G) ⊂ γ4(G) then 5 − k ≥ 4, and 0 ≤ k ≤ 1. We have s5
4 = 1,

s5
2 = s5

3 = 1 and [y, s2] = sa
4 . the relation y5s10

2 s10
3 s5

4s5 = sz
4 imply sz

4 = 1 so z = 0. As n = 6 we obtain

w = 0. If k = 0 then G ∼ G
(5)
0 (0, 0) and if k = 1 G ∼ G

(5)
a (0, 0).

If n = 4, Since [χ2(G), γ2(G)] ⊂ γ5−k(G) ⊂ γ4(G) we have 4 − k ≥ 4, and k = 0, thus [y, s2] = 1, i.e

a = 0. By the same way in this case we have w = z = 0, therefor G ∼ G
(4)
0 (0, 0). �

Proposition 3.2. Let G be a metabelian 5-group of maximal class of order 5n. If the transfers VH2→γ
2
(G)

and VHi→γ
2
(G), 3 ≤ i ≤ 6, are trivial, then we have:

- If n = 5 or 6 then G ∼ G
(n)
a (0, 0).

- If n ≥ 7 then G ∼ G
(n)
0 (0, 0) .

Proof. If n = 5 or 6, by [ [2], theorem 1.6] we have [χ2(G), γ2(G)] = 1 and [χ2(G), γ2(G)] ⊂ γ4(G)

elementary, and (γ2(χ2(G)))5 = 1 and
∏3

i=2[γi(G), γ4(G)] = 1, we conclude that (xy)5 = x5y5s10
2 s10

3 s5
4s5

and we have y5s10
2 s10

3 s5
4s5 = sz

n−1 then (xy)5 = x5sz
n−1 and since VH2→γ

2
(G) and VH3→γ

2
(G) are trivial

then (xy)5 = x5 = sz
n−1 = sw

n−1 = 1, thus z = w = 0. Since [χ2(G), γ2(G)] = γn−k ⊂ γ4(G) we have

n − k ≥ 4, whence 0 ≤ k ≤ 2 because n = 5 or 6 then G ∼ G
(n)
a (0, 0).

If n ≥ 7, according to corollary page 69 of [2] we have, (γj(χ2(G)))5 = γj+4(G) for j ≥ 2, and since
y5s10

2 s10
3 s5

4s5 = sz
n−1 we obtain:

y5 = sz
n−1s−1

5 s−1
4 s−10

3 s−10
2 ≡ sz

n−1s−1
5 modγ6(G)

because s5
2 ∈ γ6(G), s5

3 ∈ γ6(G) and s5
4 ∈ γ6(G), and since n ≥ 7 we have sn−1 ∈ γ6(G), therefor

V = VH3→γ
2

(G)(y) ≡ s−1
5 modγ6(G). Thus Im(V ) ⊂ γ5(G), In fact Im(V ) = γ5(G), and also we have

y /∈ ker(V ) and ∀f ≥ 2 yksl
f /∈ ker(V ). The kernel of V is formed by elements of γ2(G) of exponent

5, its exactly γn−4(G), and since G is of maximal class then the rank of γ2(G) is 2 and γ2(G) admits
exactly 25 elements of exponent 5, these elements form γn−4(G). We conclude that |χ2(G)/γ2(χ2(G))| =
|γn−4(G)| × |γ5(G)| = 54 × 5n−5 = 5n−1 = |χ2(G)|, whence χ2(G) is abelian because γ2(χ2(G)) = 1,
consequently [y, s2] = 1, thus a = 0. As the cases n = 5 or 6 we obtain (xy)5 = x5sz

n−1, therefor

z = w = 0, hence G ∼ G
(n)
0 (0, 0).

In the case when VH2→γ
2

(G) and VHi→γ
2

(G), 4 ≤ i ≤ 6 are trivial, according to [ [2], theorem 1.6] we have
(xyµ)5 = x5(y5s10

2 s10
3 s5

4s5)µ = sw
n−1sµz

n−1 with µ = 2, 3, 4, then we can admit the same reasoning to prove
the result. �

Proposition 3.3. Let G be a metabelian 5-group of maximal class of order 5n. If the transfers VHi→γ
2
(G)

and VHj →γ
2

(G), where i, j ∈ {3, 4, 5, 6} and i 6= j, are trivial, then we have: G ∼ G
(n)
0 (0, 0).
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Proof. Assume that Hi = 〈xyµ
1 , γ2(G)〉 and Hj = 〈xyµ

2 , γ2(G)〉 where µ1, µ2 ∈ {1, 2, 3, 4} and µ1 6= µ2.

According to [ [2], theorem 1.6] we have already prove that (xyµ
1 )5 = s

w+µ
1
z

n−1 and (xyµ
2)5 = s

w+µ
2

z
n−1 . Since

VHi→γ
2

(G) and VHj→γ
2
(G) are trivial, we obtain s

w+µ
1
z

n−1 = s
w+µ

2
z

n−1 = 1 then w+µ1z ≡ w+µ2z ≡ 0 (mod 5)
and since 5 does not divide µ1 − µ2 we get z = 0 and at the same time w = 0. To prove a = 0 we admit
the same reasoning as proposition 3.2. �

3.2. Application

.

Through this section we denote by:

- p a prime number such that p ≡ −1(mod 25).

- K0 = Q(ζ5) the 5th cyclotomic field, (ζ5 = e
2πi

5 ).

- K = K0( 5
√

p) a cyclic Kummer extension of K0 of degree 5.

- CF,5 the 5-ideal class group of a number field F .

- K∗ = (K/K0)∗ the relative genus field of K/K0.

- F
(1)
5 the absolute Hilbert 5-class field of a number field F .

- G = Gal
(

(K∗)
(1)
5 /K0

)

.

We begin by the following theorem.

Theorem 3.4. Let K = Q( 5
√

p, ζ5) be the normal closure of a pure quintic field Q( 5
√

p), where p a prime

congruent to −1 modulo 25. Let K0 be the the 5th cyclotomic field. Assume that the 5-class group CK,5 of

K, is of type (5, 5), then Gal(K∗/K0) is of type (5, 5), and two sub-extensions of K∗/K0 admit a trivial

5-class number.

Proof. By C
(σ)
K,5 we denote the subgroup of ambiguous ideal classes under the action of Gal(K/K0) = 〈σ〉.

According to [ [7], theorem 1.1], in this case of the prime p we have rank C
(σ)
K,5 = 1, and by class field

theory, since [K∗ : K] = |C(σ)
K,5|, we have that K∗/K is a cyclic quintic extension, whence Gal(K∗/K0) is

of type (5, 5).
Since p ≡ −1(mod 25), then p splits in K0 as p = π1π2, where π1, π2 are primes of K0. By [ [8], theorem
5.15] we have explicitly the relative genus field K∗ as K∗ = K( 5

√

πa1

1 πa2

2 ) = K0( 5
√

π1π2, 5

√

πa1

1 πa2

2 ) with
a1, a2 ∈ {1, 2, 3, 4} such that a1 6= a2. Its clear that the extension K∗/K0 admits six sub-extensions,

where K is one of them, and the others are K0( 5

√

πa1

1 πa2

2 ), K0( 5

√

πa1+1
1 πa2+1

2 ), K0( 5

√

πa1+2
1 πa2+2

2 ),

K0( 5

√

πa1+3
1 πa2+3

2 ) and K0( 5

√

πa1+4
1 πa2+4

2 ). Since a1, a2 ∈ {1, 2, 3, 4}, we can see that the extensions

L1 = K0( 5
√

π1) and L2 = K0( 5
√

π2) are sub-extensions of K∗/K0.
In [ [8], section 5.1], we have an investigation of the rank of ambiguous classes of K0( 5

√
x)/K0, denoted t.

We have t = d + q∗ − 3, where d is the number of prime divisors of x in K0, and q∗ an index defined as [
[8], section 5.1]. For the extensions Li/K0, (i = 1, 2), we have d = 1 and by [ [8], theorem 5.15] we have
q∗ = 2, hence t = 0.
By h5(Li), (i = 1, 2), we denote the class number of Li, then we have h5(L1) = h5(L2) = 1. Otherwise
h5(Li) 6= 1, then there exists an unramified cyclic extension of Li, denoted F . This extension is abelian
over K0, because [F : K0] = 52, then F is contained in (Li/K0)∗ the relative genus field of Li/K0. Since
[(Li/K0)∗ : Li] = 5t = 1, we get that (Li/K0)∗ = Li, which contradicts the existence of F . Hence the
5-class number of Li, (i = 1, 2), is trivial. �
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In what follows, we denote by L1 and L2 the two sub-extensions of K∗/K0, which verify theorem 3.4,

and by L̃ the three remaining sub-extensions different to K. Let G = Gal((K∗)
(1)
5 /K0), we have γ2(G) =

Gal((K∗)
(1)
5 /K∗), then G/γ2(G) = Gal(K∗/K0) is of type (5, 5), therefore G is metabelian 5-group

with factor commutator of type (5, 5), thus G admits exactly six maximal normal subgroups as follows:

H = Gal((K∗)
(1)
5 /K), HLi

= Gal((K∗)
(1)
5 /Li), (i = 1, 2), H̃ = Gal((K∗)

(1)
5 /L̃) .

With χ2(G) is one of them.

Now we can state our principal result.

Theorem 3.5. Let G = Gal((K∗)
(1)
5 /K0) be a 5-group of order 5n, n ≥ 4, then G is a metabelian of

maximal class. Furthermore we have:

- If χ2(G) = HLi
(i = 1, 2) then: G ∼ G

(n)
a (z, 0) with n ∈ {4, 5, 6} and a, z ∈ {0, 1}.

- If χ2(G) = H̃ then : G ∼ G
(n)
1 (0, 0) with n = 5 or 6.

....... G ∼ G
(n)
0 (0, 0) with n ≥ 7 such that n = s + 1 where h5(L̃) = 5s.

Proof. Let G = Gal((K∗)
(1)
5 /K0) and H = Gal((K∗)

(1)
5 /K) its maximal normal subgroup, then γ2(H) =

Gal((K∗)
(1)
5 /K

(1)
5 ), therefor H/γ2(H) = Gal(K

(1)
5 /K) ≃ CK,5, and as CK,5 is of type (5, 5) by hypothesis

we get that |H/γ2(H)| = 52. Lemma 2.3 imply that G is a metabelian 5-group of maximal class, generated
by two elements G = 〈x, y〉, such that, x ∈ G \ χ2(G) and y ∈ χ2(G) \ γ2(G). Since χ2(G) = 〈y, γ2(G)〉,
we have χ2(G) 6= H . Otherwise we get that |H/γ2(H)| = 52, which contradict theorem 2.1.
According to theorem 3.4, we have h5(L1) = h5(L2) = 1, then the transfers VHLi

→γ
2

(G) are trivial.
If χ2(G) = HLi

the results are nothing else than proposition 3.1.
If χ2(G) = H̃ and n = 4 then γ4(G) = 1 and [χ2(G), γ2(G)] = γ2(H̃), also [χ2(G), γ2(G)] = γ4(G) = 1
then χ2(H̃) = 1, whence H̃ is abelian. Consequently H̃/γ2(H̃) = CL̃,5, so h5(L̃) = |H̃| = 53 because its

a maximal subgroup of G. Since L̃ and k have always the same conductor, we deduce that h5(K) and
h5(L̃) verify the relations 55hL̃ = uh4

Γ and 55hK = uh4
Γ, given by C. Parry in [15], where u is a unit

index and a divisor of 56. Using the 5-valuation on these relations we get that h5(L̃) = 5s where s is
even, which contradict the fact that h5(L̃) = 53, hence n ≥ 5.
The results of the theorem are exactly application of propositions 3.2, 3.3. According to proposition 3.2,
if n ≥ 7 we have |χ2(G)| = 5n−1 and since h5(L̃) = |H̃/γ2(H̃)| = |H̃ | = 5n−1 = 5s we deduce that
n = s + 1. �

4. Numerical examples

.
For these numerical examples of the prime p, we have that CK,5 is of type (5, 5) and rank C

(σ)
K,5 = 1, which

mean that K∗ is cyclic quintic extension of K, then by theorem 3.5 we have a completely determination

of G. We note that the absolute degree of (K∗)
(1)
5 surpass 100, then the task to determine the order of

G is definitely far beyond the reach of computational algebra systems like MAGMA and PARI/GP.

Table 1: K = Q( 5
√

p, ζ5) with CK,5 is of type (5, 5) and rank C
(σ)
K,5 = 1

p p (mod 25) hK,5 CK,5 rank (C
(σ)
K,5)

149 -1 25 (5, 5) 1
199 -1 25 (5, 5) 1
349 -1 25 (5, 5) 1
449 -1 25 (5, 5) 1
559 -1 25 (5, 5) 1
1249 -1 25 (5, 5) 1
1499 -1 25 (5, 5) 1
1949 -1 25 (5, 5) 1
1999 -1 25 (5, 5) 1
2099 -1 25 (5, 5) 1
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