Exponential Growth of Positive Initial Energy Solutions for Coupled Nonlinear Klein-Gordon Equations with Degenerate Damping and Source Terms

Amar Ouaoua and Messaoud Maouni

ABSTRACT: In this paper we will prove that the positive initial-energy solution for coupled nonlinear Klein-Gordon equations with degenerate damping and source terms grows exponentially.

Key Words: Klein-Gordon equation, Degenerate damping, Local existence, Growth of solution.

Contents

1 Introduction 1
2 Preliminaries 2
3 Exponential growth 4

1. Introduction

In this work, we consider the coupled nonlinear Klein-Gordon equations:

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2} - \Delta u + m_1^2 u + \left(|u|^k + |v|^l\right)|u|^{p-1} u_t &= f_1(u, v), \\
\frac{\partial^2 v}{\partial t^2} - \Delta v + m_2^2 v + \left(|v|^q + |u|^q\right)|v|^{q-1} v_t &= f_2(u, v),
\end{align*}
\]

(1.1)

where \(p, q > 1, k, l, \theta, g \geq 0, m_1, m_2 > 0, (x, t) \in \Omega \times (0, T) \) and \(\Omega \) is a bounded domain with smooth boundary \(\partial \Omega \) in \(\mathbb{R}^n \) (\(n \geq 1 \)), and the two functions \(f_1(u, v) \) and \(f_2(u, v) \) given by

\[
\begin{align*}
f_1(u, v) &= |u + v|^{2(r+1)} (u + v) + |u|^r u |v|^{r+2}, \\
f_2(u, v) &= |u + v|^{2(r+1)} (u + v) + |u|^{r+2} |v|^r v.
\end{align*}
\]

(1.2)

The system (1.1) is supplemented with the following initial conditions:

\[
((u(0), v(0))) = (u_0, v_0), \quad ((u_t(0), v_t(0))) = (u_1, v_1), \quad x \in \Omega
\]

(1.3)

and boundary conditions

\[
u(x) = v(x) = 0, \quad x \in \partial \Omega.
\]

(1.4)

Some special case of the single wave equation with nonlinear damping and nonlinear source terms in the form

\[
\frac{\partial^2 u}{\partial t^2} - \Delta u + a|u_t|^{p-1} u_t = b|u|^{q-1} u,
\]

(1.5)

with the presence of different mechanisms of dissipation, damping and for more general forms of nonlinearities has been extensively studied and results concerning existence, nonexistence and asymptotic behavior of solutions have been established by several authors and many results appeared in the literature over the past decades. See ([1], [5] – [8], [10], [16]). The absence of the terms \(m_1^2 u \) and \(m_2^2 u \), equations (1.1) take the form

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2} - \Delta u + \left(|u|^k + |v|^l\right)|u|^{p-1} u_t &= f_1(u, v), \\
\frac{\partial^2 v}{\partial t^2} - \Delta v + \left(|v|^q + |u|^q\right)|v|^{q-1} v_t &= f_2(u, v).
\end{align*}
\]

(1.6)
In [13] Rammaha and Sakuntasathien focus on the global well-posedness of the system of nonlinear wave equation (1.6). In [17] Wu studied blow up of solutions of the system (1.1) for \(n = 3 \) and \(k = l = \theta = \phi = 0 \). Agre and Rammaha [3] studied the global existence and the blow up of the solution of problem (1.6) when \(k = l = \theta = \phi \), and also Alves et al [4], investigated the existence, uniform decay rates and blow up of the solution. In [11] Erhen Pişkin prove the blow up of solutions of (1.1) in finite time with negative initial energy and nondegenerate damping terms. In the work [9], authors considered the following nonlinear viscoelastic system

\[
\begin{aligned}
&u_{tt} - \Delta u + \int_0^t g(t-s) \Delta u(x,s) \, ds + |u|^{p-1} u_t = f_1(u, v), \\
v_{tt} - \Delta v + \int_0^t h(t-s) \Delta v(x,s) \, ds + |v|^{q-1} v_t = f_2(u, v).
\end{aligned}
\]

(1.7)

and they prove a global nonexistence for certain solutions with positive initial energy, the main tool proof is a method used in [15]. In [14], B. Said-Houari proved that the energy associated to the system (1.8)

\[
\begin{aligned}
&|u|^p u_{tt} - \Delta u - \Delta u t + \int_0^t g(t-s) \Delta u(x,s) \, ds + |u|^{p-1} u_t = f_1(u, v), \\
&|v|^q v_{tt} - \Delta v - \Delta v t + \int_0^t h(t-s) \Delta v(x,s) \, ds + |v|^{q-1} v_t = f_2(u, v).
\end{aligned}
\]

(1.8)

is unbounded and it grows up as an exponential function as time goes to infinity, provided that the initial data are large enough. The key ingredient in his proof is a method used in vitillaro [16] and developed in [15] for a system of wave equations.

Our paper is organized as follows, In section 2, we present the assumptions and some lemmas needed for our result. Section 3 is devoted the proof of the main result.

2. Preliminaries

In this section, we shall give some lemmas which will be used throughout this work.

Lemma 2.1. [2] (Sobolev-Poincaré Inequality) Let \(s \) be a number with \(2 \leq s < +\infty \) if \(n \leq 2 \) and \(2 \leq s \leq \frac{2n}{n-2} \) if \(n > 2 \). Then there is a constant \(C \) depending on \(\Omega \) and \(s \) such that

\[
\|u\|_s \leq C \|\nabla u\|_2, \quad u \in H^1_0.
\]

(2.1)

Lemma 2.2. (Young’s Inequality) Let \(a, b \geq 0 \) and \(\frac{1}{p} + \frac{1}{q} = 1 \) for \(0 < p, q < +\infty \), then one has the inequality

\[
ab \leq \delta a^\rho + c(\delta) b^\eta,
\]

where \(\delta > 0 \) is an constant, and \(c(\delta) \) is a positive constant depending on \(\delta \).

We assume that

\[
\begin{aligned}
&\ r > -1 \text{ if } n = 1,2 \\
&\ -1 < r \leq \frac{3-n}{n-2} \text{ if } n \geq 3.
\end{aligned}
\]

(2.2)

We can easily verify that

\[
uf_1(u, v) + vf_2(u, v) = 2(r+2)F(u, v)
\]

(2.3)

where

\[
F(u, v) = \frac{1}{2(r+2)} \left[|u+v|^{2(r+2)} + 2 |uv|^{r+2} \right].
\]

(2.4)

Lemma 2.3. [9] There exist two positive constants \(c_1 \) and \(c_2 \) such that

\[
c_1 \left(|u|^{2(r+2)} + |v|^{2(r+2)} \right) \leq 2(r+2) F(u, v) \leq c_2 \left(|u|^{2(r+2)} + |v|^{2(r+2)} \right),
\]

(2.5)

is satisfied.
Now, we define the following energy function associated with a solution \((u, v)\) of problem (1.1) – (1.4)

\[
E(t) = \frac{1}{2} \left(\|u_t\|_2^2 + \|v_t\|_2^2 \right) + \frac{1}{2} \left(\|\nabla u\|_2^2 + \|\nabla v\|_2^2 \right) + m_1^2 \|u\|_2^2 + m_2^2 \|v\|_2^2 - \int_\Omega F(u, v) \, dx. \tag{2.6}
\]

Lemma 2.4. Let \((u, v)\) be a solution (1.1) – (1.4) then \(E(t)\) is a nonincreasing function for \(t > 0\) and

\[
E'(t) = -\int_\Omega \left(|u|^k + |v|^l \right) |u_t|^{p+1} \, dx - \int_\Omega \left(|v|^\sigma + |u|^\rho \right) |u_t|^{q+1} \, dx \tag{2.7}
\]

Proof. By multiplying the first equation of (1.1) by \(u_t\) and the second equation by \(v_t\), integrating over \(\Omega\), using integration by parts and summing up, we get

\[
E(t) - E(0) = -\int_0^t \int_\Omega \left(|u|^k + |v|^l \right) |u_t|^{p+1} \, dx - \int_0^t \int_\Omega \left(|v|^\sigma + |u|^\rho \right) |u_t|^{q+1} \, dx ds \tag{2.8}
\]

\[\square\]

Next, we state the local existence theorem that can be established combining arguments of [12, 13]. We give the definition of a weak solution to problem (1.1) – (1.4).

Definition 2.5. A pair of function \((u, v)\) is said to be a weak solution of (1.1) – (1.4) on \([0, T]\) if

\[
u, v \in C \left([0, T]; \; H^1_0(\Omega) \cap L^2(\Omega) \right), \; u_t \in C \left([0, T]; \; L^2(\Omega) \cap L^{p+1}(\Omega \times (0, T)) \right)
\]

and

\[
v_t \in C \left([0, T]; \; L^2(\Omega) \cap L^{q+1}(\Omega \times (0, T)) \right).
\]

In addition, \((u, v)\) satisfies

\[
\int_\Omega u'(t) \varphi \, dx - \int_\Omega u_1(t) \varphi \, dx + \int_\Omega \nabla u \nabla \varphi \, dx + m_1^2 \int_\Omega u \varphi \, dx
\]

\[
+ \int_0^t \int_\Omega \left(|u|^k + |v|^l \right) |u_t|^{p+1} u' \varphi \, dxds = \int_0^t \int_\Omega f(u, v) \varphi \, dxds \tag{2.9}
\]

\[
\int_\Omega v'(t) \phi \, dx - \int_\Omega v_1(t) \phi \, dx + \int_\Omega \nabla v \nabla \phi \, dx + m_2^2 \int_\Omega v \phi \, dx
\]

\[
+ \int_0^t \int_\Omega \left(|v|^\sigma + |u|^\rho \right) |v_t|^{q+1} v' \phi \, dxds = \int_0^t \int_\Omega f_2(u, v) \phi \, dxds \tag{2.10}
\]

for all test function \(\varphi \in H^1_0(\Omega) \cap L^{p+1}(\Omega), \phi \in H^1_0(\Omega) \cap L^{q+1}(\Omega)\) and for almost all \(t \in [0, T]\).

Theorem 2.6. (Local existence) Assume that (2.2) holds. Then, for any initial data \(u_0, v_0 \in H^1_0(\Omega) \cap L^2(\Omega)\) and \(u_1, v_1 \in L^2(\Omega)\). There exists a unique local weak solution \((u, v)\) of problem (1.1) – (1.4) (in the sense of definition 2.5) defined in \([0, T]\) for some \(T > 0\), and satisfies the energy identity

\[
E(t) + \int_0^t \int_\Omega \left(|u|^k + |v|^l \right) |u_t|^{p+1} \, dxds + \int_0^t \int_\Omega \left(|v|^\sigma + |u|^\rho \right) |v_t|^{q+1} \, dxds = E(0), \; t \geq 0. \tag{2.11}
\]
3. Exponential growth

In this section, we are going to prove our main result. We need in the sequel the following Lemmas.

Lemma 3.1. [9] Suppose that (2.2) holds. Then there exists \(\eta > 0\) such that for any \((u, v) \in H^1_0(\Omega) \times H^1_0(\Omega)\) the inequality

\[
2 (r + 2) \int_{\Omega} F(u, v) \leq \eta \left(\frac{1}{2} \left(\|\nabla u\|_2^2 + \|\nabla v\|_2^2 \right) + m_1^2 \|u\|_2^2 + m_2^2 \|v\|_2^2 \right)^{(r+2)/2} \tag{3.1}
\]

holds.

Proof. Direct computation using Minkowski, Hölder’s and Young’s inequality and the embedding theorem yields the proof of this Lemma. □

We introduce the following constants:

\[
B = \eta^{1/(r+2)}, \quad \alpha_1 = B^{-\frac{r+2}{r+1}}, \quad E_1 = \left(\frac{1}{2} - \frac{1}{2(r+2)} \right) \alpha_1^2, \tag{3.2}
\]

where \(\eta\) is the optimal constant in (3.1).

The following lemma is very useful to prove our result for positive initial energy \(E(0) > 0\). It is similar to the one the lemma in [9], first used by Vitillaro [16].

Lemma 3.2. Suppose that (2.2) holds. Let \((u, v)\) be a solution of (1.1) – (1.4). Assume further that \(E(0) < E_1\) and

\[
\left(\frac{1}{2} \left(\|\nabla u_0\|_2^2 + \|\nabla v_0\|_2^2 \right) + m_1^2 \|u_0\|_2^2 + m_2^2 \|v_0\|_2^2 \right)^{\frac{1}{(r+2)}} > \alpha_1 \tag{3.3}
\]

Then there exists a constant \(\alpha_2 > \alpha_1\), such that

\[
\left(\frac{1}{2} \left(\|\nabla u\|_2^2 + \|\nabla v\|_2^2 \right) + m_1^2 \|u\|_2^2 + m_2^2 \|v\|_2^2 \right)^{\frac{1}{(r+2)}} > \alpha_2, \tag{3.4}
\]

and

\[
\left(\|u + v\|_2^{2(r+2)}/(r+2) + 2 \|uv\|_2^{r+2}/(r+2) \right)^{\frac{1}{(r+2)}} \geq B \alpha_2, \quad \forall t \geq 0. \tag{3.5}
\]

Theorem 3.3. Suppose that (2.2) holds. Assume further that

\[
2 (r + 2) > \max \{k + p + 1, \ l + p + 1, \ \theta + q + 1, \ \varrho + q + 1\} \tag{3.6}
\]

Then any solution of problem (1.1) – (1.4) with initial data satisfying

\[
\left(\frac{1}{2} \left(\|\nabla u_0\|_2^2 + \|\nabla v_0\|_2^2 \right) + m_1^2 \|u_0\|_2^2 + m_2^2 \|v_0\|_2^2 \right)^{\frac{1}{2}} > \alpha_1, \tag{3.7}
\]

\(E(0) < E_1\), where \(\alpha_1\) is defined in (3.2), grows exponentially.

Proof. Set

\[
H(t) = E_1 - E(t) \tag{3.8}
\]

By using (2.6) and (3.8) we get

\[
0 < H(0) \leq H(t) = E_1 - \frac{1}{2} \left(\|u_t\|_2^2 + \|v_t\|_2^2 \right) - \frac{1}{2} \left(\|\nabla u\|_2^2 + \|\nabla v\|_2^2 \right)
\]

□
From (3.4), we obtain

\[
E_1 - \frac{1}{2} \left(\|u_t\|^2_{L^2} + \|v_t\|^2_{L^2} \right) - \frac{1}{2} \left(\|\nabla u\|^2_{L^2} + \|\nabla v\|^2_{L^2} \right)
\]

\[
- \left(\frac{m_1^2}{2} \|u\|^2_{L^2} + \frac{m_2^2}{2} \|v\|^2_{L^2} \right) \leq E_1 - \frac{1}{2} \alpha_1^2 \leq -\frac{1}{2} \frac{1}{(r+2)} \alpha_1^2 < 0
\]

(3.9)

Hence, by the above inequality and (2.5), we have

\[
0 < H(0) \leq H(t) \leq \frac{c_2}{2(r+2)} \left(\|u\|^{2(r+2)}_{L^2} + \|v\|^{2(r+2)}_{L^2} \right)
\]

(3.10)

We then define the following Lyapunov function

\[
G(t) = H(t) + \epsilon \int_\Omega (u u_t + v v_t) \, dx
\]

(3.11)

for \(\epsilon \) small to be chosen later.

Our goal is to show that \(G(t) \) satisfies a differential inequality of the form

\[
\frac{d}{dt} G(t) \geq \zeta G(t)
\]

(3.12)

By taking a derivative of (3.11) and using equations (1.1), we obtain

\[
G'(t) = H'(t) + \epsilon \left(\|u_t\|^2_{L^2} + \|v_t\|^2_{L^2} \right) - \epsilon \left(\|\nabla u\|^2_{L^2} + \|\nabla v\|^2_{L^2} \right)
\]

\[
- \epsilon \left(\frac{m_1^2}{2} \|u\|^2_{L^2} + \frac{m_2^2}{2} \|v\|^2_{L^2} \right) + \epsilon \int_\Omega (u f_1(u, v) + v f_2(u, v)) \, dx
\]

\[
- \epsilon \int_\Omega \left(|u|^k + |v|^l \right) u_t |u_t|^{p-1} \, dx - \epsilon \int_\Omega \left(|v|^\theta + |u|^\theta \right) v_t |v_t|^{q-1} \, dx.
\]

(3.13)

From the definition of \(H(t) \), it follows that

\[
- \left(\|\nabla u\|^2_{L^2} + \|\nabla v\|^2_{L^2} \right) = -2E_1 + 2H(t) - 2 \int_\Omega F(u, v)
\]

\[
+ \left(\|u_t\|^2_{L^2} + \|v_t\|^2_{L^2} \right) + m_1^2 \|u\|^2_{L^2} + m_2^2 \|v\|^2_{L^2}
\]

(3.14)

Inserting (3.14) into (3.13), lead to

\[
G'(t) = H'(t) + 2\epsilon \left(\|u_t\|^2_{L^2} + \|v_t\|^2_{L^2} \right) - 2 \epsilon E_1 + 2 \epsilon H(t)
\]

\[
+ \epsilon \left(1 - \frac{1}{r+2} \right) \left(\|u + v\|^{2(r+2)}_{L^{2(r+2)}} + 2 \|uv\|^{r+2}_{L^{r+2}} \right)
\]

\[
- \epsilon \int_\Omega \left(|u|^k + |v|^l \right) u_t |u_t|^{p-1} \, dx - \epsilon \int_\Omega \left(|v|^\theta + |u|^\theta \right) v_t |v_t|^{q-1} \, dx
\]

(3.15)
By taking \(c_3 = 1 - \frac{1}{r+2} - 2E_1(B\alpha_2)^{-2(r+2)} \), one can easily check that \(c_3 > 0 \), since \(\alpha_2 > B^{-\frac{1}{r+2}} \). Therefore, (3.15) take the form

\[
G' (t) \geq H' (t) + 2c \left(\|u_t\|_2^2 + \|v_t\|_2^2 \right) \\
+ 2cH (t) + c_3 \left(\|u + v\|_{2(r+2)}^2 + 2\|uv\|_{r+2} \right) \\
- \epsilon \int_{\Omega} (|u|^k + |v|) u_t |u_t|^{p-1} u dx - \epsilon \int_{\Omega} (|v|^q + |u|^q) v_t |v_t|^{q-1} v dx
\]

(3.16)

In the order to estimate the last two terms in (3.16), we make of the following Young’s inequatily

\[
XY \leq \frac{\delta^\alpha X^\alpha}{\alpha} + \frac{\delta^{-\beta} Y^\beta}{\beta},
\]

\(X, Y \geq 0, \delta > 0, \alpha, \beta \in \mathbb{R}^+ \) such that \(\frac{1}{\alpha} + \frac{1}{\beta} = 1 \). Consequently, we get

\[
u_t \leq \frac{p}{p+1}\delta_1^{\frac{p}{p+1} |u|^{p+1}} + \frac{1}{p+1}\delta_1^{p+1} |u_t|^{p+1},
\]

and therefore

\[
\int_{\Omega} (|u|^k + |v|) u_t |u_t|^{p-1} u dx \leq \frac{p}{p+1}\delta_1^{\frac{p}{p+1} |u|^{p+1}} \int_{\Omega} (|u|^k + |v|) |u|^{p+1} dx
\]

\[
+ \frac{1}{p+1}\delta_1^{p+1} \int_{\Omega} (|u|^k + |v|) |u_t|^{p+1} dx
\]

(3.17)

Similarly, for all \(\delta_2 > 0 \)

\[
v_t \leq \frac{q}{q+1}\delta_2^{\frac{q}{q+1} |v|^{q+1}} + \frac{1}{q+1}\delta_2^{q+1} |v_t|^{q+1},
\]

then

\[
\int_{\Omega} (|v|^q + |u|^q) v_t |v_t|^{q-1} v dx \leq \frac{q}{q+1}\delta_2^{\frac{q}{q+1} |v|^{q+1}} \int_{\Omega} (|v|^q + |u|^q) |v|^{q+1} dx
\]

\[
+ \frac{1}{q+1}\delta_2^{q+1} \int_{\Omega} (|v|^q + |u|^q) |v_t|^{q+1} dx
\]

(3.18)

Inserting (3.17), (3.18) into (3.16), we obtain

\[
G' (t) \geq H' (t) + 2c \left(\|u_t\|_2^2 + \|v_t\|_2^2 \right) \\
+ 2cH (t) + c_3 \left(\|u + v\|_{2(r+2)}^2 + 2\|uv\|_{r+2} \right) \\
- \epsilon \int_{\Omega} (|u|^k + |v|) u_t |u_t|^{p-1} u dx - \epsilon \int_{\Omega} (|v|^q + |u|^q) v_t |v_t|^{q-1} v dx
\]

\[
- \epsilon \frac{p}{p+1}\delta_1^{\frac{p}{p+1} |u|^{p+1}} \int_{\Omega} (|u|^k + |v|) |u_t|^{p+1} dx - \epsilon \frac{q}{q+1}\delta_2^{\frac{q}{q+1} |v|^{q+1}} \int_{\Omega} (|v|^q + |u|^q) |v_t|^{q+1} dx
\]

(3.19)

Using Young’s inequality, we get

\[
\int_{\Omega} (|u|^k + |v|) |u_t|^{p+1} dx \leq \|u\|_{k+p+1}^{k+p+1} + \int_{\Omega} |v| |u_t|^{p+1} dx
\]
\[
\frac{\partial u}{\partial t} + u \Delta u = f(x, t) \frac{\partial u}{\partial t} + u \Delta u = f(x, t)
\]

where

\[
u = \frac{1}{p}
\]

Substituting (3.24) into (3.22) and lemma 3, (3.19) becomes

\[
G'(t) \geq H'(t) + 2\varepsilon \left(\|u_t\|_2^2 + \|v_t\|_2^2 \right) + \varepsilon \left(m_1^2 \|u\|_2^2 + m_2^2 \|v\|_2^2 \right)
\]

By using (3.20), (3.21) and lemma 3, (3.19) becomes

\[
\frac{1}{p+1} \int_{\Omega} \left(|u|^p + |v|^p \right) |u_t|^p \, dx - \frac{1}{q+1} \int_{\Omega} \left(|v|^q + |u|^q \right) |v_t|^q \, dx
\]

We define the algebraic inequality

\[
z^\nu \leq (z+1) \left(1 + \frac{1}{a} \right) (z+a), \quad \forall z \geq 0, \ 0 < \nu < 1, \ a > 0.
\]

In the sequel noting by \(c \) the various constants.

Since (3.6) holds, by the embedding theorem and the previous inequality, we obtain

\[
\begin{align*}
\|u\|_{k+p+1}^{k+p+1} & \leq c \|u\|_{2(r+2)}^{2(r+2)} \leq c d \left(\|u\|^2_{2(r+2)} + H(0) \right) \leq c d \left(\|u\|^2_{2(r+2)} + H(t) \right) \\
\|u\|_{l+p+1}^{l+p+1} & \leq c d \left(\|u\|^2_{2(r+2)} + H(t) \right) \\
\|u\|_{\theta+q+1}^{\theta+q+1} & \leq c d \left(\|u\|^2_{2(r+2)} + H(t) \right) \\
\|v\|_{l+p+1}^{l+p+1} & \leq c d \left(\|v\|^2_{2(r+2)} + H(t) \right) \\
\|v\|_{\theta+q+1}^{\theta+q+1} & \leq c d \left(\|v\|^2_{2(r+2)} + H(t) \right)
\end{align*}
\]

where \(d = 1 + \frac{1}{\mu(\omega)}. \) Choosing

\[
K_1 = \frac{p+1}{l+p+1} \gamma_1^{-\frac{l+p+1}{p+1}}, \quad K_2 = \frac{q}{q+1} \gamma_2^{-\frac{\theta+q+1}{q+1}}, \quad \text{and} \quad K_3 = \frac{l+p+1}{l+p+1} \gamma_1^{-\frac{l+p+1}{l+p+1}}, \quad K_4 = \frac{q+1}{q+1} \gamma_2^{-\frac{\theta+q+1}{q+1}}
\]

Substituting (3.24) into (3.22) and using the formula of \(H'(t) \), we obtain

\[
G'(t) \geq (1 - \varepsilon K) H'(t) + 2\varepsilon \left(\|u_t\|_2^2 + \|v_t\|_2^2 \right) + \varepsilon \left(m_1^2 \|u\|_2^2 + m_2^2 \|v\|_2^2 \right)
\]
where $K = \max\left(\frac{1}{p+1}\delta_1^{p+1}, \frac{1}{q+1}\delta_2^{q+1}\right)$. At this point, and for large values of δ_1 and δ_2, and we pick ϵ small enough, we can find positive constants $\lambda, \lambda_1, \lambda_2$ and λ_3 such that (3.25) becomes

$$G' (t) \geq \lambda H' (t) + 2 \epsilon \left(\|u_t\|_2^2 + \|v_t\|_2^2\right) + \epsilon \lambda_1 \|u\|_2^{2(r+2)} + \epsilon \lambda_2 \|v\|_2^{2(r+2)} + \epsilon \lambda_3 H (t).$$

Therefore

$$G' (t) \geq M \left(\|u_t\|_2^2 + \|v_t\|_2^2 + \|u\|_2^{2(r+2)} + \|v\|_2^{2(r+2)} + H (t)\right),$$

where $M = \min(2, \lambda_1, \lambda_2, \lambda_3)$. Consequently, we have

$$G (0) = H (0) + \epsilon \int_\Omega (u_0 u_1 + v_0 v_1) \, dx > 0.$$

Now, by Hölder’s and Young’s inequalities, we estimate

$$\int_\Omega (u u_t + v v_t) \, dx \leq k_1 \|u\|_2^2 + \|v_t\|_2^2 + k_2 \|v_t\|_2^2 + \|v\|_2^2 + \frac{1}{4k_2} \|v_t\|_2^2, \quad k_1, k_2 > 0. \tag{3.28}$$

We can find constant c such that

$$\int_\Omega (u u_t + v v_t) \, dx \leq c \left(\|u\|_2^{2(r+2)} + \|v\|_2^{2(r+2)} + \|u_t\|_2^2 + \|v_t\|_2^2 + \|u_t\|_2^2 + \|v_t\|_2^2\right) \tag{3.29}$$

Again applied (3.23) and the embedding theorem, we get

$$\|u\|_2^2 \leq c \|u\|_2^{2(r+2)} \leq c \left(\|u\|_2^{2(r+2)}\right)^{\frac{2}{2(r+2)}} \leq cd \left(\|u\|_2^{2(r+2)} + H (t)\right).$$

Similarly,

$$\|v\|_2^2 \leq cd \left(\|v\|_2^{2(r+2)} + H (t)\right).$$

Also, noting that

$$G (t) = H (t) + \epsilon \int_\Omega (u u_t + v v_t) \, dx \leq c (H (t) + \|u\|_2^{2(r+2)} + \|v\|_2^{2(r+2)})$$

$$+ \|u_t\|_2^2 + \|v_t\|_2^2. \tag{3.30}$$

And combining with (3.27) and (3.30), we arrive at

$$\frac{d}{dt} G (t) \geq \xi G (t), \quad \xi > 0, \quad \forall t \geq 0. \tag{3.31}$$

Integrating of (3.31) between 0 and t gives

$$G (t) \geq G (0) e^{\xi t}, \quad \forall t \geq 0. \tag{3.32}$$

This completes the proof.
Exponential Growth of Positive Initial Energy Solutions

References

Amar Ouamoua,
Department of Mathematics,
Laboratory of Applied Mathematics and History and Didactics of Mathematics (LAMAHIS)
University of 20 August 1955, Skikda,
Algeria.
E-mail address: a.ouaoua@univ-skikda.dz

and

Messaoud Maouni,
Department of Mathematics,
Laboratory of Applied Mathematics and History and Didactics of Mathematics (LAMAHIS)
University of 20 August 1955, Skikda,
Algeria.
E-mail address: m.maouni@univ-skikda.dz