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abstract: In this paper, we obtain the expressions of the solutions of the following nonlinear systems of
difference equations

xn+1 =
xn−9

1 + xn−9yn−4

, yn+1 =
yn−9

±1 ± xn−4yn−9

, n = 0, 1, ...,

where the initial conditions x
−9, x

−8, x
−7, x

−6, x
−5, x

−4, x
−3, x

−2, x
−1, x0, y

−9, y
−8, y

−7, y
−6, y

−5,

y
−4, y

−4, y
−3, y

−2, y
−1, y0 are arbitrary non zero real numbers.
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tions.
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1. Introduction

Many problems in Probability give rise to difference equations. Difference equations relate to differen-
tial equations as discrete mathematics relates to continuous mathematics. Anyone who has made a study
of differential equations will know that even supposedly elementary examples can be hard to solve. By
contrast, elementary difference equations are relatively easy to deal with. Aside from Probability, Com-
puter Scientists take an interest in difference equations for a number of reasons. For example, difference
equations frequently arise when determining the cost of an algorithm in big-O notation. Since difference
equations are readily handled by program, a standard approach to solving a nasty differential equation
is to convert it to an approximately equivalent difference equation see [1]- [30].

Many articles discuss difference equations systems, for example, Elsayed et al. [17] dealt with the
solutions of the system of the difference equations

xn+1 =
1

xn−pyn−p

, yn+1 =
xn−pyn−p

xn−qyn−q

.

Kurbanli et al. [22] discussed the behavior of positive solutions of the following system

xn+1 =
xn−1

1 + xn−1yn

, yn+1 =
yn−1

1 + yn−1xn

.
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El-Dessoky [7] considered the solutions of the following system

xn+1 =
yn−1yn−2

xn(±1 ± yn−1yn−2)
, yn+1 =

xn−1xn−2

yn(±1 ± xn−1xn−2)
.

In [10] El-Dessoky and Elsayed investigated the form of the solution of the following systems of
difference equations.

xn+1 =
xn−2

±1 ± xn−2zn−1yn

, yn+1 =
yn−2

±1 ± yn−2xn−1zn

, zn+1 =
zn−2

±1 ± zn−2yn−1xn

Elabbasy et al. [6] devoted to investigate the local asymptotic stability, boundedness and periodic
solutions of particular cases of the following general system of difference equations:

xn+1 =
a1yn−1 + a2xn−3 + a3

a4yn−1xn−3 + a5
, yn+1 =

b1xn−1 + b2yn−3 + b3

b4xn−1yn−3 + b5
.

Elsayed et al. [15] obtained the expressions of the solutions of the following nonlinear systems of
difference equations

xn+1 =
ynxn−2

yn + yn−3
, yn+1 =

xnyn−2

±xn ± xn−3
.

Khan et al. [20], studied the qualitative behavior of two systems of second-order rational difference
equations.

Zhang et al. [30] discussed the boundedness, persistence, and global asymptotic stability of positive
solution for a system of third-order rational difference equations

xn+1 = A +
xn

yn−1yn−2
, yn+1 = A +

yn

xn−1xn−2
.

Elsayed and Ahmed [16] investigated the solutions and the periodicity of the following rational systems
of difference equations of three-dimensional

xn+1 =
ynxn−2

xn−2 ± zn−1
, yn+1 =

znyn−2

yn−2 ± xn−1
, zn+1 =

xnzn−2

zn−2 ± yn−1
.

Asiri et al. [1] studied the form of the solutions and the periodicity of the following third order
systems of rational difference equations

xn+1 =
yn−2

1 − yn−2xn−1yn

, yn+1 =
xn−2

1 − xn−2yn−1xn

.

The aim of this article is to obtain the expressions of the solutions of the following systems of difference
equations

xn+1 =
xn−9

1 + xn−9yn−4
, yn+1 =

yn−9

±1 ± xn−4yn−9
, n = 0, 1, 2, ..., (1.1)

where the initial conditions x−9, x−8, x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0, y−9, y−8, y−7, y−6, y−5,
y−4, y−4, y−3, y−2, y−1, y0 are arbitrary non zero real numbers. Moreover, we obtain some numerical
simulation to the equation are given to illustrate our results.

2. On The System xn+1 = xn−9

1+xn−9yn−4

, yn+1 = yn−9

1+xn−4yn−9

In this section, we study the solution of the following system of difference equations

xn+1 =
xn−9

1 + xn−9yn−4
, yn+1 =

yn−9

1 + xn−4yn−9
, (2.1)

where the initial conditions x−9, x−8, x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0, y−9, y−8, y−7,
y−6, y−5, y−4, y−4, y−3, y−2, y−1, y0 are arbitrary non zero real numbers.
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2.1. The Form of the Solutions of System (2)

The following theorem describes the form of the solutions of system (2).
Theorem 1. Suppose that {xn, yn} are solutions of the system (2). Then for n = 0, 1, 2, ..., we have the
following formulas

x10n−9 = s

n−1
∏

i=0

1 + 2ist

1 + (2i + 1)st
, x10n−8 = k

n−1
∏

i=0

1 + 2ikw

1 + (2i + 1)kw
,

x10n−7 = h

n−1
∏

i=0

1 + 2ihv

1 + (2i + 1)hv
, x10n−6 = g

n−1
∏

i=0

1 + 2igu

1 + (2i + 1)gu
,

x10n−5 = f

n−1
∏

i=0

1 + 2ifr

1 + (2i + 1)fr
, x10n−4 = e

n−1
∏

i=0

1 + (2i + 1)eq

1 + (2i + 2)eq
,

x10n−3 = d

n−1
∏

i=0

1 + (2i + 1)dp

1 + (2i + 2)dp
, x10n−2 = c

n−1
∏

i=0

1 + (2i + 1)co

1 + (2i + 2)co
,

x10n−1 = b

n−1
∏

i=0

1 + (2i + 1)Lb

1 + (2i + 2)Lb
, x10n = a

n−1
∏

i=0

1 + (2i + 1)az

1 + (2i + 2)az
,

y10n−9 = q
n−1
∏

i=0

1 + 2ieq

1 + (2i + 1)eq
, y10n−8 = p

n−1
∏

i=0

1 + 2idp

1 + (2i + 1)dp
,

y10n−7 = o
n−1
∏

i=0

1 + 2ico

1 + (2i + 1)co
, y10n−6 = L

n−1
∏

i=0

1 + 2iLb

1 + (2i + 1)Lb
,

y10n−5 = z
n−1
∏

i=0

1 + 2iaz

1 + (2i + 1)az
, y10n−4 = t

n−1
∏

i=0

1 + (2i + 1)st

1 + (2i + 2)st
,

y10n−3 = w
n−1
∏

i=0

1 + (2i + 1)kw

1 + (2i + 2)kw
, y10n−2 = v

n−1
∏

i=0

1 + (2i + 1)hv

1 + (2i + 2)hv
,

y10n−1 = u
n−1
∏

i=0

1 + (2i + 1)gu

1 + (2i + 2)gu
, y10n = r

n−1
∏

i=0

1 + (2i + 1)fr

1 + (2i + 2)fr
,

where the initial conditions x−9 = s, x−8 = k, x−7 = h, x−6 = g, x−5 = f, x−4 = e, x−3 = d,
x−2 = c, x−1 = b, x0 = a, y−9 = q, y−8 = p, y−7 = o, y−6 = L, y−5 = z, y−4 = t, y−3 = w,
y−2 = v, y−1 = u, y0 = r.
Proof. For n = 0 the result holds. Suppose that the result holds for n − 1.

x10n−19 = s

n−2
∏

i=0

1 + 2ist

1 + (2i + 1)st
, x10n−18 = k

n−2
∏

i=0

1 + 2ikw

1 + (2i + 1)kw
,

x10n−17 = h

n−2
∏

i=0

1 + 2ihv

1 + (2i + 1)hv
, x10n−16 = g

n−2
∏

i=0

1 + 2igu

1 + (2i + 1)gu
,

x10n−15 = f

n−2
∏

i=0

1 + 2ifr

1 + (2i + 1)fr
, x10n−14 = e

n−2
∏

i=0

1 + (2i + 1)eq

1 + (2i + 2)eq
,

x10n−13 = d

n−2
∏

i=0

1 + (2i + 1)dp

1 + (2i + 2)dp
, x10n−12 = c

n−2
∏

i=0

1 + (2i + 1)co

1 + (2i + 2)co
,
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x10n−11 = b

n−2
∏

i=0

1 + (2i + 1)Lb

1 + (2i + 2)Lb
, x10n−10 = a

n−2
∏

i=0

1 + (2i + 1)az

1 + (2i + 2)az
,

y10n−19 = q

n−2
∏

i=0

1 + 2ieq

1 + (2i + 1)eq
, y10n−18 = p

n−2
∏

i=0

1 + 2idp

1 + (2i + 1)dp
,

y10n−17 = o

n−2
∏

i=0

1 + 2ico

1 + (2i + 1)co
, y10n−16 = L

n−2
∏

i=0

1 + 2iLb

1 + (2i + 1)Lb
,

y10n−15 = z

n−2
∏

i=0

1 + 2iaz

1 + (2i + 1)az
, y10n−14 = t

n−2
∏

i=0

1 + (2i + 1)st

1 + (2i + 2)st
,

y10n−13 = w

n−2
∏

i=0

1 + (2i + 1)kw

1 + (2i + 2)kw
, y10n−12 = v

n−2
∏

i=0

1 + (2i + 1)hv

1 + (2i + 2)hv
,

y10n−11 = u

n−2
∏

i=0

1 + (2i + 1)gu

1 + (2i + 2)gu
, y10n−10 = r

n−2
∏

i=0

1 + (2i + 1)fr

1 + (2i + 2)fr
,

from system (2) we can prove as follow

x10n−9 =
x10n−19

1 + x10n−19y10n−14
=

s

n−2
∏

i=0

( 1+2ist
1+(2i+1)st

)

1 + st

n−2
∏

i=0

( 1+2ist
1+(2i+1)st

)(1+(2i+1)st

1+(2i+2)st
)

=

s

n−2
∏

i=0

( 1+2ist
1+(2i+1)st

)

1 + st

n−2
∏

i=0

( 1+2ist
1+(2i+2)st

)

=

s

n−2
∏

i=0

( 1+2ist
1+(2i+1)st

)

1 + ( st
1+(2n−2)st

)

(

1 + (2n − 2)st

1 + (2n − 2)st

)

=

s (1 + (2n − 2)st)

n−2
∏

i=0

( 1+2ist
1+(2i+1)st

)

1 + (2n − 2)st + st

=
s (1 + (2n − 2)st)

1 + (2n − 1)st

n−2
∏

i=0

(

1 + 2ist

1 + (2i + 1)st

)

= s

n−1
∏

i=0

(

1 + 2ist

1 + (2i + 1)st

)

.
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Also, we get

y10n−9 =
y10n−19

1 + y10n−19x10n−14
=

q
n−2
∏

i=0

1+2ieq

1+(2i+1)eq

1 + q
n−2
∏

i=0

1+2ieq

1+(2i+1)eq
e

n−2
∏

i=0

1+(2i+1)eq

1+(2i+2)eq

=

q
n−2
∏

i=0

1+2ieq

1+(2i+1)eq

1 + eq
n−2
∏

i=0

1+2ieq

1+(2i+2)eq

=

q
n−2
∏

i=0

1+2ieq

1+(2i+1)eq

1 + eq

1+(2n−2)eq

=

q
n−2
∏

i=0

1+2ieq

1+(2i+1)eq

1+(2n−1)eq

1+(2n−2)eq

= q
n−2
∏

i=0

1 + 2ieq

1 + (2i + 1)eq

(

1 + (2n − 2)eq

1 + (2n − 1)eq

)

= q
n−1
∏

i=0

1 + 2ieq

1 + (2i + 1)eq
.

The other relations can be proved by similar way. This completes the proof.
Lemma 1. The equilibrium points of system (2) are (0, α) and (γ, 0) where α, γ ∈ [0, ∞).
Proof. For the equilibrium points of system (2), we can write

x̄ =
x̄

1 + x̄ȳ
, ȳ =

ȳ

1 + x̄ȳ
.

Then
x̄(1 + x̄ȳ) = x̄, ȳ(1 + x̄ȳ) = ȳ,

we have
x̄(1 + x̄ȳ − 1) = 0, ȳ(1 + x̄ȳ − 1) = 0.

Therefore every (0, α) and (γ, 0) are solutions. Thus the equilibrium points of system (2) are (0, α) and
(γ, 0) .
Lemma 2. Every positive solution of the system (2) is bounded and convergent.
Proof. Let {xn, yn} be a positive solution of system (2). It follows from system (2) that

xn+1 =
xn−9

1 + xn−9yn−4
< xn−9,

and
yn+1 =

yn−9

1 + yn−9xn−4
< yn−9.

Then the subsequences {x10n−9}
∞

n=0 , {x10n−8}
∞

n=0 , {x10n−7}
∞

n=0 , {x10n−6}
∞

n=0 , {x10n−5}
∞

n=0 ,
{x10n−4}

∞

n=0 , {x10n−3}
∞

n=0 , {x10n−2}
∞

n=0 , {x10n−1}
∞

n=0 and {x10n}
∞

n=0 are decreasing and so are bounded
from above by

M = max {x−9, x−8, x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0} .

Similarly the subsequences {y10n−9}
∞

n=0 , {y10n−8}
∞

n=0 , {y10n−7}
∞

n=0 , {y10n−6}
∞

n=0 , {y10n−5}
∞

n=0 ,
{y10n−4}∞

n=0 , {y10n−3}∞

n=0 , {y10n−2}∞

n=0 , {y10n−1}∞

n=0 and {y10n}∞

n=0 are decreasing and so are bounded
from above by

N = max {y−9, y−8, y−7, y−6, y−5, y−4, y−3, y−2, y−1, y0} .

Lemma 3. If a, b, c, d, e, f, g, h, k, s, o, p, q, r, s, L, t, u, v, w and z arbitrary real numbers and let {xn, yn}
be a solution of system (2) then the following statements are true:
(i) If a = 0, z 6= 0, (or z = 0, a 6= 0), then x10n = 0 and y10n−5 = z ( or x10n = a and y10n−5 = 0).

(ii)If b = 0, L 6= 0, (or L = 0, b 6= 0), then x10n−1 = 0 and y10n−6 = L ( or x10n−1 = b and y10n−6 = 0).

(iii)If c = 0, o 6= 0, ( or o = 0, c 6= 0), then x10n−2 = 0 and y10n−7 = o (or x10n−2 = c and y10n−7 = 0).
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(iv)If d = 0, p 6= 0, ( or p = 0, d 6= 0), then x10n−3 = 0 and y10n−8 = p (or x10n−3 = d and y10n−8 = 0).

(v)If e = 0, q 6= 0, ( or q = 0, e 6= 0), then x10n−4 = 0 and y10n−9 = q (or x10n−4 = e and y10n−9 = 0).

(vi)If f = 0, r 6= 0, ( or r = 0, f 6= 0), then x10n−5 = 0 and y10n = r (or x10n−5 = f and y10n = 0).

(vii)If g = 0, u 6= 0, ( or u = 0, g 6= 0), then x10n−6 = 0 and y10n−1 = u (or x10n−6 = g and y10n−1 =
0).

(viii)If h = 0, v 6= 0, ( or v = 0, h 6= 0), then x10n−7 = 0 and y10n−2 = v (or x10n−7 = h and y10n−2 =
0).

(ix)If k = 0, w 6= 0, ( or w = 0, k 6= 0), then x8n−1 = 0 and y10n−3 = w (or x8n−1 = k and y10n−3 = 0).

(x)If s = 0, t 6= 0, ( or t = 0, s 6= 0), then x10n−9 = 0 and y10n−4 = t (or x10n−9 = s and y10n−4 = 0).

Proof. The proof follows from the form of the solutions of system (1).

2.2. Numerical Examples

In order to illustrate the results of the previous sections and to support our theoretical discussions,
we consider several interesting numerical examples in this section.

Example 1. For the initial conditions x−9 = −1.5, x−8 = −6.2, x−7 = 0.6, x−6 = 1.3, x−5 = 12,
x−4 = −0.6, x−3 = 0.9, x−2 = 0.2, x−1 = 0.6, x0 = 8.3, y−9 = 0.7, y−8 = 1.8, y−7 = 0.3, y−6 = 1.1,
y−5 = −1.4, y−4 = −2.5, y−3 = 1.6, y−2 = 9, y−1 = 0.3, y0 = 0.9 when we take the system (2). (See Fig.
1).
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Example 2. We consider interesting numerical example for the difference equations system (2) with the
initial conditions x−9 = 1.5, x−8 = 6.2, x−7 = 6, x−6 = 13, x−5 = 12, x−4 = 0.6, x−3 = 9, x−2 = 2,
x−1 = 0.6, x0 = 8.3, y−9 = 0.7, y−8 = 1.8, y−7 = 0.3, y−6 = 11, y−5 = 14, y−4 = 25, y−3 = 16, y−2 = 9,
y−1 = 0.3, y0 = 2.9. (See Fig. 2).
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Example 3. Consider the difference system (2) with the initial conditions x−9 = 1.5, x−8 = 0, x−7 = 6,
x−6 = 13, x−5 = 0, x−4 = 0, x−3 = 9, x−2 = 0, x−1 = 0.6, x0 = 0, y−9 = 0, y−8 = 1.8, y−7 = 0.3,
y−6 = 0, y−5 = 14, y−4 = 0, y−3 = 16, y−2 = 0, y−1 = 0.3, y0 = 2.9. (See Fig. 3).
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3. On The System xn+1 = xn−9

1+xn−9yn−4

, yn+1 = yn−9

1−xn−4yn−9

In this section, we obtain the form of the solution of the following system of difference equations

xn+1 =
xn−9

1 + xn−9yn−4
, yn+1 =

yn−9

1 − xn−4yn−9
, (3.1)

where the initial conditions x−9, x−8, x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0, y−9, y−8, y−7,
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y−6, y−5, y−4, y−4, y−3, y−2, y−1, y0 are arbitrary non zero real numbers with x−9y−4, x−8y−3, x−7y−2,
x−6y−1, x−5y0 6= −1 and x−4y−9, x−3y−8, x−2y−7, x−1y−6, x0y−5 6= 1.

3.1. The Form of the Solutions of System (3)

Theorem 2. Let {xn, yn} are solutions of system (3). Then for n = 0, 1, 2, ..., we have

x10n−9 =
s

(1 + st)n
, x10n−8 =

k

(1 + kw)n
, x10n−7 =

h

(1 + hv)n
, x10n−6 =

g

(1 + gu)n
,

x10n−5 =
f

(1 + fr)n
, x10n−4 = (−1)ne(eq − 1)n, x10n−3 = (−1)nd(dp − 1)n,

x10n−2 = (−1)nc(co − 1)n, x10n−1 = (−1)nb(Lb − 1)n, x10n = (−1)na(az − 1)n,

y10n−9 =
(−1)nq

(eq − 1)n
, y10n−8 =

(−1)np

(dp − 1)n
, y10n−7 =

(−1)no

(co − 1)n
, y10n−6 =

(−1)nL

(Lb − 1)n
,

y10n−5 =
(−1)nz

(az − 1)n
, y10n−4 = t(st + 1)n, y10n−3 = w(kw + 1)n,

y10n−2 = v(hv + 1)n, y10n−1 = u(gu + 1)n, y10n = r(fr + 1)n.

Proof. For n = 0 the result holds. Suppose that the result holds for n − 1

x10n−19 =
s

(1 + st)n−1
, x10n−18 =

k

(1 + kw)n−1
, x10n−17 =

h

(1 + hv)n−1
,

x10n−16 =
g

(1 + gu)n−1
, x10n−15 =

f

(1 + fr)n−1
, x10n−14 = (−1)n−1e(eq − 1)n−1,

x10n−13 = (−1)n−1d(dp − 1)n−1, x10n−12 = (−1)n−1c(co − 1)n−1,

x10n−11 = (−1)n−1b(Lb − 1)n−1, x10n−10 = (−1)n−1a(az − 1)n−1,

y10n−19 =
(−1)n−1q

(eq − 1)n−1
, y10n−18 =

(−1)n−1p

(dp − 1)n−1
, y10n−17 =

(−1)n−1o

(co − 1)n−1
,

y10n−16 =
(−1)n−1L

(Lb − 1)n−1
, y10n−15 =

(−1)n−1z

(az − 1)n−1
, y10n−14 = t(st + 1)n−1,

y10n−13 = w(kw + 1)n−1, y10n−12 = v(hv + 1)n−1,

y10n−11 = u(gu + 1)n−1, y10n−10 = r(fr + 1)n−1,

from system (3) we can see that

x10n−9 =
x10n−19

1 + x10n−19y10n−14
=

s
(1+st)n−1

1 + ( s
(1+st)n−1 )(t(st + 1)n−1)

=

s
(1+st)n−1

1 + st
=

s

(1 + st)n
.
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Also, we get

x10n−8 =
x10n−18

1 + x10n−18y10n−13
=

k
(1+kw)n−1

1 + ( k
(1+kw)n−1 w(kw + 1)n−1)

=
k

(1 + kw)n
,

x10n−3 =
x10n−13

1 + x10n−13y10n−8
=

(−1)n−1d(dp − 1)n−1

1 + (−1)np

(dp−1)n
(−1)n−1d(dp − 1)n−1

=
(−1)nd(dp − 1)n

−dp + 1 + dp
= (−1)nd(dp − 1)n,

y10n−6 =
y10n−16

1 − y10n−16x10n−11
=

(−1)n−1L

(Lb−1)n−1

1 − (−1)n−1L

(Lb−1)n−1 (−1)n−1b(Lb − 1)n−1

=

(−1)n−1L

(Lb−1)n−1

1 − (−1)2n−1Lb
=

(−1)nL

(Lb − 1)n
.

By similar way we can prove the other relations. This completes the proof.

Lemma 4. Assume that {xn, yn} be a solution of system (3) with x−9y−4, x−8y−3, x−7y−2, x−6y−1,
x−5y0 = −2 and x−4y−9, x−3y−8, x−2y−7, x−1y−6, x0y−5 = 2, then {xn} and {yn} is periodic with
period twenty.

Proof. From the form of the solutions of system (3) we see when x−9y−4, x−8y−3, x−7y−2, x−6y−1,
x−5y0 = −2 and x−4y−9, x−3y−8, x−2y−7, x−1y−6, x0y−5 = 2 that

x10n−9 =
s

(−1)n
, x10n−8 =

k

(−1)n
, x10n−7 =

h

(−1)n
, x10n−6 =

g

(−1)n
, x10n−5 =

f

(−1)n
,

x10n−4 = (−1)ne, x10n−3 = (−1)nd, x10n−2 = (−1)nc, x10n−1 = (−1)nb, x10n = (−1)na,

y10n−9 = (−1)nq, y10n−8 = (−1)np, y10n−7 = (−1)no, y10n−6 = (−1)nL, y10n−5 = (−1)nz,

y10n−4 = t(−1)n, y10n−3 = w(−1)n, y10n−2 = v(−1)n, y10n−1 = u(−1)n, y10n = r(−1)n.

and so it is periodic with period twenty. This completes the proof.

Lemma 5. Let {xn, yn} be a positive solution of system (3), then {xn} is bounded and converges to
zero.

Proof. It follows from system (3) that

xn+1 =
xn−9

1 + xn−9yn−4
< xn−9.

Then the subsequences {x10n−9}
∞

n=0 , {x10n−8}
∞

n=0 , {x10n−7}
∞

n=0 , {x10n−6}
∞

n=0 , {x10n−5}
∞

n=0 ,
{x10n−4}∞

n=0 , {x10n−3}∞

n=0 , {x10n−2}∞

n=0 , {x10n−1}∞

n=0 and {x10n}∞

n=0 are decreasing and so are bounded
from above by

M = max {x−9, x−8, x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0} .

3.2. Numerical Examples

Here we plot some examples to illustrate the results of the previous sections.

Example 4. See Figure 4 when we suppose the initial conditions for system (3) as follows: x−9 = 0.25,
x−8 = 0.8, x−7 = 0.3, x−6 = 0.13, x−5 = 0.9, x−4 = 0.11, x−3 = 0.58, x−2 = 0.7, x−1 = 0.6, x0 = 0.4,
y−9 = 1.2, y−8 = .08, y−7 = 0.3, y−6 = 0.5, y−5 = 0.34, y−4 = 0.11, y−3 = 0.16, y−2 = 0.565, y−1 = 0.311,
y0 = 0.9.



10 E. M. Elsayed and H. S. Gafel

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

n

x 
(n

),
y 

(n
)

plot of x
n+1

=x
n−9

/(1+x
n−9

y
n−4

,y
n+1

=y
n−9

/(1−y
n−9

x
n−4

)

 

 
x

n

y
n

Example 5. We take a numerical example for the system (3) with the initial conditions x−9 = 0.15,
x−8 = −0.8, x−7 = 0.3, x−6 = −0.13, x−5 = 0.9, x−4 = −0.11, x−3 = −0.8, x−2 = 0.1, x−1 = 0.2,
x0 = −0.4, y−9 = 0.2, y−8 = −0.08, y−7 = 0.78, y−6 = 0.085, y−5 = 0.34, y−4 = 0.11, y−3 = 0.16,
y−2 = −0.65, y−1 = 0.311, y0 = 0.9. (See Fig. 5).
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Example 6. Figure 6 shows the periodic solutions with period twenty for system (3) when x−9 = 2/11,
x−8 = −1/3, x−7 = −4, x−6 = −20, x−5 = 0.2, x−4 = 0.4, x−3 = −0.25, x−2 = 2/9, x−1 = 20, x0 = 1/7,
y−9 = 5, y−8 = −8, y−7 = 9, y−6 = 0.1, y−5 = 14, y−4 = −11, y−3 = 6, y−2 = 0.5, y−1 = 0.1, y0 = −10.
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4. On The Systems xn+1 = xn−9

1+xn−9yn−4

, yn+1 = yn−9

−1±xn−4yn−9

Here, we investigate the expressions of the solutions of the following systems of difference equations

xn+1 =
xn−9

1 + xn−9yn−4
, yn+1 =

yn−9

−1 + xn−4yn−9
, (4.1)

xn+1 =
xn−9

1 + xn−9yn−4
, yn+1 =

yn−9

−1 − xn−4yn−9
, (4.2)

where the initial conditions x−9, x−8, x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0, y−9, y−8, y−7,
y−6, y−5, y−4, y−4, y−3, y−2, y−1, y0 are arbitrary non zero real numbers.

4.1. The Form of the Solutions of Systems (4.1) and (4.2)

Theorem 3. Assume that {xn, yn} are solutions of the system (4.1) where the initial conditions satisfy
that x−9y−4, x−8y−3, x−7y−2, x−6y−1, x−5y0 6= ±1 and x−4y−9, x−3y−8, x−2y−7, x−1y−6, x0y−5 6= 1, 6=
1
2 . Then we have the following expressions for n = 0, 1, 2, ...,

x20n−9 =
(−1)ns

(s2t2 − 1)n
, x20n−8 =

(−1)nk

(k2w2 − 1)n
, x20n−7 =

(−1)nh

(h2v2 − 1)n
,

x20n−6 =
(−1)ng

(g2u2 − 1)n
, x20n−5 =

(−1)nf

(f2r2 − 1)n
, x20n−4 =

(−1)ne(eq − 1)2n

(2eq − 1)n
,

x20n−3 =
(−1)nd(dp − 1)2n

(2dp − 1)n
, x20n−2 =

(−1)nc(co − 1)2n

(2co − 1)n
, x20n−1 =

(−1)nb(Lb − 1)2n

(2Lb − 1)n
,

x20n =
(−1)na(az − 1)2n

(2az − 1)n
, x20n+1 =

(−1)ns

(st + 1)(s2t2 − 1)n
, x20n+2 =

(−1)nk

(1 + kw)(k2w2 − 1)n
,

x20n+3 =
(−1)nh

(1 + hv)(h2v2 − 1)n
, x20n+4 =

(−1)ng

(1 + gu)(g2u2 − 1)n
, x20n+5 =

(−1)nf

(1 + fr)(f2r2 − 1)n
,

x20n+6 =
(−1)ne(eq − 1)2n+1

(2eq − 1)n+1
, x20n+7 =

(−1)nd(dp − 1)2n+1

(2dp − 1)n+1
, x20n+8 =

(−1)nc(co − 1)2n+1

(2co − 1)n+1
,

x20n+9 =
(−1)nb(Lb − 1)2n+1

(2Lb − 1)n+1
, x20n+10 =

(−1)na(az − 1)2n+1

(2az − 1)n+1
,
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y20n−9 =
(−1)nq(2eq − 1)n

(eq − 1)2n
, y20n−8 =

(−1)np(2dp − 1)n

(dp − 1)2n
, y20n−7 =

(−1)no(2co − 1)n

(co − 1)2n
,

y20n−6 =
(−1)nL(2Lb − 1)n

(Lb − 1)2n
, y20n−5 =

(−1)nz(2az − 1)n

(az − 1)2n
, y20n−4 = (−1)nt(s2t2 − 1)n,

y20n−3 = (−1)nw(k2w2 − 1)n, y20n−2 = (−1)nv(h2v2 − 1)n, y20n−1 = (−1)nu(g2u2 − 1)n,

y20n = (−1)nr(f2r2 − 1)n, y20n+1 =
(−1)nq(2eq − 1)n

(eq − 1)2n+1
, y20n+2 =

(−1)np(2dp − 1)n

(dp − 1)2n+1
,

y20n+3 =
(−1)no(2co − 1)n

(co − 1)2n+1
, y20n+4 =

(−1)nL(2Lb − 1)n

(Lb − 1)2n+1
, y20n+5 =

(−1)nz(2az − 1)n

(az − 1)2n+1
,

y20n+6 = (−1)n+1t(st + 1)(s2t2 − 1)n, y20n+7 = (−1)n+1w(kw + 1)(k2w2 − 1)n,

y20n+8 = (−1)n+1v(hv + 1)(h2v2 − 1)n, y20n+9 = (−1)n+1u(gu + 1)(g2u2 − 1)n,

y20n+10 = (−1)n+1r(fr + 1)(f2r2 − 1)n.

Proof. As the proof of Theorem 1 and will be left to the reader.

Theorem 4. Consider {xn, yn} are solutions of the system (4.2) with x−9y−4, x−8y−3, x−7y−2, x−6y−1,
x−5y0 6= −1, 6= − 1

2 and x−4y−9, x−3y−8, x−2y−7, x−1y−6, x0y−5 6= ±1. Then for n = 0, 1, 2, ...,

x20n−9 =
s(2st + 1)n

(st + 1)2n
, x20n−8 =

k(2kw + 1)n

(kw + 1)2n
, x20n−7 =

h(2hv + 1)n

(hv + 1)2n
,

x20n−6 =
g(2gu + 1)n

(gu + 1)2n
, x20n−5 =

f(2fr + 1)n

(fr + 1)2n
, x20n−4 = (−1)ne(e2q2 − 1)n,

x20n−3 = (−1)nd(d2p2 − 1)n, x20n−2 = (−1)nc(c2o2 − 1)n, x20n−1 = (−1)nb(L2b2 − 1)n,

x20n = (−1)na(a2z2 − 1)n, x20n+1 =
s(2st + 1)n

(st + 1)2n+1
, x20n+2 =

k(2kw + 1)n

(kw + 1)2n+1
,

x20n+3 =
h(2hv + 1)n

(hv + 1)2n+1
, x20n+4 =

g(2gu + 1)n

(gu + 1)2n+1
, x20n+5 =

f(2fr + 1)n

(fr + 1)2n+1
,

x20n+6 = (−1)ne(eq + 1)(e2q2 − 1)n, x20n+7 = (−1)nd(dp + 1)(d2p2 − 1)n,

x20n+8 = (−1)nc(co + 1)(c2o2 − 1)n, x20n+9 = (−1)nb(Lb + 1)(L2b2 − 1)n,

x20n+10 = (−1)na(az + 1)(a2z2 − 1)n,

y20n−9 =
(−1)nq

(e2q2 − 1)n
, y20n−8 =

(−1)np

(d2p2 − 1)n
, y20n−7 =

(−1)no

(c2o2 − 1)n
,

y20n−6 =
(−1)nL

(L2b2 − 1)n
, y20n−5 =

(−1)nz

(a2z2 − 1)n
, y20n−4 =

t(st + 1)2n

(2st + 1)n
,

y20n−3 =
w(kw + 1)2n

(2kw + 1)n
, y20n−2 =

v(hv + 1)2n

(2hv + 1)n
, y20n−1 =

u(gu + 1)2n

(2gu + 1)n
,

y20n =
r(fr + 1)2n

(2fr + 1)n
, y20n+1 =

(−1)nq(2eq − 1)n

(eq − 1)2n+1
, y20n+2 =

(−1)np(2dp − 1)n

(dp − 1)2n+1
,

y20n+3 =
(−1)no(2co − 1)n

(co − 1)2n+1
, y20n+4 =

(−1)nL(2Lb − 1)n

(Lb − 1)2n+1
, y20n+5 =

(−1)nz(2az − 1)n

(az − 1)2n+1
,

y20n+6 =
−t(st + 1)2n+1

(2st + 1)n+1
, y20n+7 =

−w(kw + 1)2n+1

(2kw + 1)n+1
, y20n+8 =

−v(hv + 1)2n+1

(2hv + 1)n+1
,

y20n+9 =
−u(gu + 1)2n+1

(2gu + 1)n+1
, y20n+10 =

−r(fr + 1)2n+1

(2fr + 1)n+1
.

Proof. As in the proof of Theorem 2 and will be omitted.
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4.2. Numerical Examples

In this subsection to support our theoretical discussions, we consider some interesting numerical
examples.

Example 7. When we put the initial conditions x−9 = −2.1, x−8 = 0.3, x−7 = −4, x−6 = 0.11,
x−5 = 0.5, x−4 = 1.9, x−3 = −1, x−2 = 0.039, x−1 = 0.2, x0 = −0.7, y−9 = 0.35, y−8 = −0.38,
y−7 = 0.9, y−6 = 0.1, y−5 = −0.14, y−4 = −0.11, y−3 = 0.6, y−2 = −0.5, y−1 = 0.1, y0 = 0.62 for system
(4). (See Fig. 7).
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Example 8. See Figure 8 it shows the periodicity of the solutions for system (4) where the initial
conditions takes the numbers x−9 = x−8 = x−7 = x−6 = x−5 = 0, x−4 = 1.9, x−3 = −1, x−2 = 0.39,
x−1 = 0.2, x0 = 0.7, y−9 = y−8 = y−7 = y−6 = y−5 = 0, y−4 = 0.11, y−3 = 0.6, y−2 = 0.5, y−1 = 0.81,
y0 = 0.62.
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Example 9. Let we take for the difference system (5) the initial conditions x−9 = 0.8, x−8 = −0.2,
x−7 = 0.25, x−6 = −0.33, x−5 = 0.15, x−4 = 0.9, x−3 = −0.01, x−2 = 0.39, x−1 = 0.2, x0 = 0.7,
y−9 = 0.085, y−8 = 0.3, y−7 = −0.29, y−6 = 0.56, y−5 = 0.41, y−4 = −0.11, y−3 = 0.6, y−2 = 0.5,
y−1 = 0.81, y0 = 0.62. (See Fig. 9).
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