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Three Solutions for a Discrete Fourth-Order Boundary Value Problem with Three

Parameters

Martin Bohner, Giuseppe Caristi, Shapour Heidarkhani and Shahin Moradi

abstract: This paper presents several sufficient conditions for the existence of at least three classical
solutions of a boundary value problem for a fourth-order difference equation. Fourth-order boundary value
problems act as models for the bending or deforming of elastic beams. In different fields of research, such as
computer science, mechanical engineering, control systems, artificial or biological neural networks, economics
and many others, the mathematical modelling of important questions leads naturally to the consideration
of nonlinear difference equations. Our technical approach is based on variational methods. An example is
included in the paper. Numerical computations of the example confirm our theoretical results.
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1. Introduction

Let T ∈ N, T > 2 and [2, T ]N be the discrete interval given by {2, 3, 4, . . . , T }. In this paper, we
will examine a three-parameter boundary value problem (BVP) for a nonlinear fourth-order difference
equation, with the intention of proving the existence of three solutions. The equation to be studied can
be viewed as a discrete version of the generalized beam equation. Consider the fourth-order BVP

{

∆4u(k − 2) − α∆2u(k − 1) + βu(k) = λf(k, u(k)), k ∈ [2, T ]N,

u(1) = ∆u(0) = ∆u(T ) = ∆3u(0) = ∆3u(T − 1) = 0,
(1.1)

where ∆ is the forward difference operator defined by ∆u(k) = u(k + 1) − u(k), ∆i+1u(k) = ∆(∆iu(k)),
λ ≥ 0, f : [2, T ]N × R → R is a continuous function, and α, β are real parameters satisfying

1 + (T − 1)T α− + T (T − 1)3β− > 0,

where
γ− = min{γ, 0} for any γ ∈ R.

Fourth-order boundary value problems act as models for the bending or deforming of elastic beams, and,
therefore, have important applications in engineering and physical sciences. Boundary value problems for
fourth-order problems have been of great concern in recent years; see [5,26,30] and the references therein.

A considerable number of problems, which are strictly connected both with boundary value differential
problems and numerical simulations of some mathematical models arising from many research areas (e.g.,
biological, physical and computer science), can be formulated as special cases of nonlinear algebraic
systems (see, for instance, [31]). Recently, there is a trend to study difference equations by using fixed
point theory, lower and upper solutions method, variational methods and critical point theory, Morse
theory, and the mountain-pass theorem. Many interesting results are obtained, see, for example, [7,10,
22,25,27,3,4] and the references therein. See also [8,9,23,24] for related studies.
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In recent years, discrete nonlinear fourth-order boundary value problems have been widely investi-
gated. We refer the reader to [19,12,1,11,13,14,17,21,28,31] and the references therein. For example,
Zhang et al. in [31], established the existence of positive solution to the fourth-order BVP











∆4x(t − 2) = λa(t)f(t, x(t)), t ∈ N, 2 ≤ t ≤ T,

x(0) = x(T + 2) = 0,

∆2x(0) = ∆2x(T ) = 0

by using the method of upper and lower solutions. Graef et al., in [14], by employing variational methods
and critical point theory, obtained the existence of multiple solutions to a periodic boundary value problem
for the fourth-order nonlinear difference equation

∆4u(t − 2) − ∆(p(t − 1)∆u(t − 1)) + q(t)u(t) = f(t, u(t)), t ∈ [1, N ]N

under the periodic boundary condition (BC)

∆iu(−1) = ∆iu(T − 1), i = 0, 1, 2, 3

where N ∈ N and f ∈ C(∈ [1, N ]N × R,R). In [11], using the variational method and the classic
mountain-pass lemma of Ambrosetti and Rabinowitz, the existence of at least two nontrivial solutions to
a discrete fourth-order boundary value problem was discussed. Applications of the results to a related
eigenvalue problem were also presented. In [17], by using a consequence of the local minimum theorem
due to Bonanno, the existence of at least one solution under algebraic conditions on the nonlinear terms
and two solutions for the discrete nonlinear fourth-order boundary value problem











∆4u(t − 2) + δ∆2u(t − 1) − ξu(t)

= λf(t, u(t)) + µg(t, u(t)) + h(u(t)), t ∈ [a + 1, b + 1]N,

u(a) = ∆2u(a − 1) = 0, u(b + 2) = ∆2u(b + 1) = 0

where f, g : [a + 1, b + 1]N × R → R are two continuous functions and h : R → R is a strictly monotone
Lipschitz continuous function, under algebraic conditions with the classical Ambrosetti–Rabinowitz (AR)
condition on the nonlinear terms, was discussed. Furthermore, by employing two critical point theorems,
one due to Averna and Bonanno, and another one due to Bonanno, the existence of two and three
solutions for the above problem in the case µ = 0, were guaranteed. Ousbika and El Allali in [28] based
on the critical point theory, proved the existence of three solutions for the discrete nonlinear fourth-order
boundary value problems with four parameters

{

∆4u(k − 2) − α∆2u(k − 1) + βu(k) = λf(k, u(k)) + µg(k, u(k)), k ∈ [2, T ]N,

u(1) = ∆u(0) = ∆u(T ) = ∆3u(0) = ∆3u(T − 1) = 0.

Motivated by the above facts, in the present paper, we study the existence of at least one nontrivial
classical solution for (1.1) under an asymptotical behaviour of the nonlinear datum at zero, see Theorem
3.1. In Theorem 3.3, we present an application of Theorem 3.1. We present Example 3.4, in which the
hypotheses of Theorem 3.3 are fulfilled. In Theorem 3.5, we present a simple consequence of Theorem
3.3, in which the function f has separated variables. In Theorem 3.6, we offer a consequence of Theorem
3.3 in the case when f does not depend upon k. In Theorem 3.7, we obtain the existence of at least two
positive solutions under suitable conditions on the nonlinear term at zero and at infinity, while, finally,
in Theorem 3.8, we ensure the existence of at least four nonnegative solutions.

2. Preliminaries

In the present paper, X denotes a finite-dimensional real Banach space and Iλ : X → R is a functional
satisfying the following structure hypothesis:

Iλ(u) := Φ(u) − λΨ(u) for all u ∈ X , where Φ, Ψ : X → R are two functions of class C1 on X such
that Φ is coercive, i.e., lim‖u‖→∞ Φ(u) = ∞, and λ is a positive real parameter.
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In this framework, a finite-dimensional variant of [2, Theorem 3.3] (see also [2, Corollary 3.1 and Remark
3.9]) is as follows.

For all r, r1, r2 with r2 > r1 and r2 > infX Φ, and all r3 > 0, we define

ϕ(r) := inf
u∈Φ−1(−∞,r)

(supu∈Φ−1(−∞,r) Ψ(u)) − Ψ(u)

r − Φ(u)
,

β(r1, r2) := inf
u∈Φ−1(−∞,r1)

sup
v∈Φ−1[r1,r2)

Ψ(v) − Ψ(u)

Φ(v) − Φ(u)
,

γ(r2, r3) :=
supu∈Φ−1(−∞,r2+r3) Ψ(u)

r3
,

α(r1, r2, r3) := max{ϕ(r1), ϕ(r2), γ(r2, r3)}.

Theorem 2.1 (See [2, Theorem 3.3]). Assume that

(a1) Φ is convex and infX Φ = Φ(0) = Ψ(0) = 0,

(a2) for every u1, u2 ∈ X such that Ψ(u1) ≥ 0 and Ψ(u2) ≥ 0, one has

inf
s∈[0,1]

Ψ(su1 + (1 − s)u2) ≥ 0.

Assume that there are three positive constants r1, r2, r3 with r1 < r2 such that

(a3) ϕ(r1) < β(r1, r2),

(a4) ϕ(r2) < β(r1, r2),

(a5) γ(r2, r3) < β(r1, r2).

Then, for each λ ∈
(

1

β(r1, r2)
,

1

α(r1, r2, r3)

)

, the functional Φ − λΨ admits three distinct critical points

u1, u2, u3 such that

u1 ∈ Φ−1(−∞, r1), u2 ∈ Φ−1[r1, r2), u3 ∈ Φ−1(−∞, r2 + r3).

We refer the interested reader to the papers [5,15,16,18,20], in which Theorem 2.1 has been successfully
employed to obtain the existence of at least three solutions for boundary value problems.

We define the real vector space E

E =
{

u : [0, T + 2]N → R : u(1) = ∆u(0) = ∆u(T ) = ∆3u(0) = ∆3u(T − 1) = 0
}

,

which is a (T − 1)-dimensional Hilbert space (see [29]) with the inner product

(u, v) =

T
∑

k=2

u(k)v(k).

The associated norm is defined by

‖u‖ =

(

T
∑

k=2

|u(k)|2
)

1
2

.

Lemma 2.2 (See [28, Lemma 2.5]). For any u, v ∈ E, we have

T
∑

k=2

∆4u(k − 2)v(k) =

T +1
∑

k=2

∆2u(k − 2)∆2v(k − 2),

T
∑

k=2

∆u(k − 1)∆v(k − 1) = −
T
∑

k=2

∆2u(k − 1)v(k).
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Put

F (k, t) :=

∫ t

0

f(k, ξ)dξ for all (k, t) ∈ [2, T ]N × R.

We consider the functionals Φ, Ψ, Iλ defined by

Φ(u) =
1

2

(

T +1
∑

k=2

|∆2u(k − 1)|2 + α

T
∑

k=2

|∆u(k − 1)|2 + β

T
∑

k=2

|u(k)|2
)

, (2.1)

Ψ(u) =

T
∑

k=1

F (k, u(k)), (2.2)

and

Iλ(u) = Φ(u) − λΨ(u)

for every u ∈ E. Note that the solutions of (1.1) are exactly the critical points of Iλ(u) = Φ(u) − λΨ(u).

Definition 2.3. We say that u ∈ E is a solution of I ′
λ(u)v = 0 for all v ∈ E if, for any v ∈ E, we have

I ′
λ(u)(v) =

T
∑

k=2

∆4u(k − 2)v(k) − α

T
∑

k=2

∆2u(k − 1)v(k)

+ β

T
∑

k=2

u(k)v(k) − λ

T
∑

k=2

f(k, u(k))v(k)

=0.

We say that u ∈ E is a solution of (1.1) if, for any v ∈ E, we have

T
∑

k=2

∆4u(k − 2)v(k) − α

T
∑

k=2

∆2u(k − 1)v(k) + β

T
∑

k=2

u(k)v(k) = λ

T
∑

k=2

f(k, u(k))v(k).

Lemma 2.4 (See [28, Lemma 2.6]). For any u ∈ E, we have

Φ(u) ≥ 1

2
ρ‖u‖2,

where

ρ =
(

1 + (T − 1)T α− + T (T − 1)3β−

)

T −1(T − 1)3.

Proposition 2.5 (See [6]). Let E be a real reflexive Banach space and E∗ be the dual space of E. Suppose

that T : E → E∗ is a continuous operator and there exists ω > 0 such that

〈T v − T v, u − v〉 ≥ ω‖u − v‖2 for all u, v ∈ E.

Then T : E → E∗ is a homeomorphism between E and E∗.

3. Main Results

For convenience, we use the notation

F(θ) =

T
∑

k=2

max
|t|≤θ

F (k, t) for θ > 0.

We present our main result as follows.



Discrete Fourth-order Boundary Value Problems 5

Theorem 3.1. Assume that there exist θ1, θ2, θ3, σ > 0 with

θ1 < σ
√

T − 1 and

√

2 + α + (T − 1)β

ρ
σ < θ2 < θ3

such that

(A1) f(k, t) ≥ 0 for each (k, t) ∈ [2, T ]N × [−θ3, θ3],

(A2)

max

{

F(θ1)

θ2
1

,
F(θ2)

θ2
2

,
F(θ3)

θ2
3 − θ2

2

}

<
ρ

2 + α + (T − 1)β

∑T

k=2 F (k, σ) − F(θ1)

σ2
.

Then, for every

λ ∈
(

1
2 (2 + α + (T − 1)β) σ2

∑T

k=2 F (k, σ) − F(θ1)
,

ρ

2
min

{

θ2
1

F(θ1)
,

θ2
2

F(θ2)
,

θ2
3 − θ2

2

F(θ3)

}

)

,

(1.1) possesses at least three nonnegative solutions u1, u2, u3 such that

max
k∈[2,T ]N

|u1(k)| < θ1, max
k∈[2,T ]N

|u2(k)| < θ2, max
k∈[2,T ]N

|u3(k)| < θ3.

Proof. Our aim is to apply Theorem 2.1 to our problem. We consider the auxiliary problem

{

∆4u(k − 2) − α∆2u(k − 1) + βu(k) = λf̂(k, u(k)), k ∈ [2, T ]N,

u(1) = ∆u(0) = ∆u(T ) = ∆3u(0) = ∆3u(T − 1) = 0,
(3.1)

where f̂ : [2, T ]N × R → R is a continuous functions defined by

f̂(k, ξ) =











f(k, −θ3) if ξ < −θ3,

f(k, ξ) if − θ3 ≤ ξ ≤ θ3,

f(k, θ3) if ξ > θ3.

If any solution of (1.1) satisfies the condition

−θ3 ≤ u(k) ≤ θ3 for every k ∈ [2, T ]N,

then any solution of (3.1) clearly turns to be also a solution of (1.1). Therefore, for our goal, it is enough
to show that our conclusion holds for (1.1). Fix λ as in the conclusion. In order to apply Theorem 2.1
to our problem, we consider Φ, Ψ as given in (2.1) and (2.2), respectively. Note that the solutions of
(1.1) are exactly the critical points of Iλ. The functionals Φ and Ψ satisfy the regularity assumptions of
Theorem 2.1. By Lemma 2.4, we see that Φ is coercive. On the other hand, Φ is Gâteaux differentiable
and sequentially weakly lower semicontinuous, and its Gâteaux derivative is the functional Φ′(u) ∈ E∗

given by

Φ′(u)(v) =

T +1
∑

k=2

∆2u(k − 2)∆2v(k − 2) + α

T
∑

k=2

∆u(k − 1)∆v(k − 1)

+β

T
∑

k=2

u(k)v(k)

for every u, v ∈ E. We prove that Φ′ admits a continuous inverse on E∗. We have

〈Φ′(u), u〉 = 2Φ(u) for every u ∈ E.
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Then
〈Φ′(u) − Φ′(v), u − v〉 = 2Φ(u − v) ≥ ρ‖u − v‖2 for each u, v ∈ E.

Hence, by Proposition 2.5, (Φ′)−1 : E∗ → E exists and is continuous. Secondly, we show that Ψ is
compact. Suppose that un → u ∈ E. Then, since f is continuous and from (2.2), we deduce that
Ψ′(un) → Ψ(un), and thus Ψ′ is compact. It is well known that Ψ is a differentiable functional whose
differential at the point u ∈ E is

Ψ′(u)(v) =

T
∑

k=2

f(k, u(k))v(k) for any v ∈ E

as well as it is sequentially weakly upper semicontinuous. Furthermore, Ψ′ : E → E∗ is a compact
operator. Now put

r1 :=
ρ

2
θ2

1, r2 :=
ρ

2
θ2

2, and r3 :=
ρ

2
(θ2

3 − θ2
2).

We define wσ(k) = σ for every k ∈ [2, T ]N. Clearly, wσ ∈ E. It is easy to verify that

Φ(wσ) =
1

2
(2 + α + (T − 1)β) σ2.

On the other hand, we have

Ψ(wσ) =

T
∑

k=2

F (k, σ).

From the conditions

θ3 > θ2, θ1 < σ
√

T − 1, and

√

2 + α + (T − 1)β

ρ
σ < θ2,

we get r3 > 0 and r1 < Φ(w) < r2. Taking into account the fact that

|u(k)| ≤ ‖u‖ ≤
√

2Φ(u)

ρ
for any k ∈ [2, T ]N,

we get from the definition of r1 that

Φ−1(−∞, r1) = {u ∈ E : Φ(u) < r1} ⊆ {u ∈ E : |u| ≤ θ1} ,

and by the same argument as above,

Φ−1(−∞, r2) ⊆ {u ∈ E : |u| ≤ θ2} .

Hence, we obtain

sup
u∈Φ−1(−∞,r1)

Ψ(u) ≤
T
∑

k=2

max
|t|≤θ1

F (k, t) = F(θ1).

In a similar way, we have
sup

u∈Φ−1(−∞,r2)

Ψ(u) ≤ F(θ2)

and
sup

Φ(u)<r2+r3

Ψ(u) ≤ F(θ3).

Therefore, since 0 ∈ Φ−1(−∞, r1) and Φ(0) = Ψ(0) = 0, we obtain

ϕ(r1) = inf
u∈Φ−1(−∞,r1)

(

supu∈Φ−1(−∞,r1) Ψ(u)
)

− Ψ(u)

r1 − Φ(u)

≤
supu∈Φ−1(−∞,r1) Ψ(u)

r1
≤ F(θ1)

r1
=

2

ρ

F(θ1)

θ2
1

,
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ϕ(r2) ≤
supu∈Φ−1(−∞,r2) Ψ(u)

r2
≤ F(θ2)

r2
=

2

ρ

F(θ2)

θ2
2

,

and

θ(r2, r3) ≤
supu∈Φ−1(−∞,r2+r3) Ψ(u)

r3
≤ F(θ3)

r3
=

2

ρ

F(θ3)

θ2
3 − θ2

2

.

For each u ∈ Φ−1(−∞, r1), one has

β(r1, r2) ≥
∑T

k=2 F (k, σ) − F(θ1)
1
2 (2 + α + (T − 1)β) σ2

.

Due to (A2), we get
α(r1, r2, r3) < β(r1, r2).

Now we show that the functional Iλ satisfies the assumption (a2) of Theorem 2.1. Let u1 and u2 be two
local minima of Iλ. Then u1 and u2 are critical points of Iλ, and so, they are solutions of (1.1). We want
to prove that they are nonnegative. Let u∗ be a (nontrivial) solution of (1.1). Arguing by a contradiction,
assume that

A := {k ∈ [2, T ]N : u∗(k) < 0} 6= ∅.

Put v̄(k) = min{u∗(k), 0} for k ∈ [2, T ]N. Clearly, v̄ ∈ E, and one has

T +1
∑

k=2

∆2u∗(k − 2)∆2v̄(k − 2) + α

T
∑

k=2

∆u∗(k − 1)∆v̄(k − 1)

+ β
T
∑

k=2

u∗(k)v̄(k) − λ
T
∑

k=2

f(k, u∗(k))v̄(k) = 0.

By choosing v̄ = u∗ and since f is nonnegative, we have

0 ≤ ρ‖u∗‖2
A ≤

∑

k∈A

|∆2u∗(k − 2)|2 + α
∑

k∈A

|∆u∗(k − 1)|2 + β
∑

k∈A

|u∗(k)|2 ≤ 0,

and thus
‖u∗‖2

A = 0,

which contradicts the fact that u∗ is a nontrivial solution. Hence, u∗ is positive. Thus, our claim is
proved. Then, we observe u1(k) ≥ 0 and u2(k) ≥ 0 for every k ∈ [2, T ]N. Thus, it follows that

λf(k, su1 + (1 − s)u2) ≥ 0 for all k ∈ [2, T ]N and all s ∈ [0, 1],

and, consequently,
Ψ(su1 + (1 − s)u2) ≥ 0 for every s ∈ [0, 1].

Hence, Theorem 2.1 implies that for every

λ ∈
(

1
2 (2 + α + (T − 1)β) σ2

∑T

k=2 F (k, σ) − F(θ1)
,

ρ

2
min

{

θ2
1

F(θ1)
,

θ2
2

F(θ2)
,

θ2
3 − θ2

2

F(θ3)

}

)

,

the functional Iλ has three critical points u1, u2, u3 ∈ E, such that Φ(u1) < r1, Φ(u2) < r2, and
Φ(u3) < r2 + r3, that is,

max
k∈[2,T ]N

|u1(k)| < θ1, max
k∈[2,T ]N

|u2(k)| < θ2, max
k∈[2,T ]N

|u3(k)| < θ3.

Then, taking into account the fact that the solutions of (1.1) are exactly the critical points of the
functional Iλ, we have the desired conclusion. �
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Remark 3.2. We observe that, in Theorem 3.1, no asymptotic conditions on f are needed, and only

algebraic conditions on f are imposed to guarantee the existence of the solutions.

Now, we deduce the following straightforward consequence of Theorem 3.1.

Theorem 3.3. Assume that there exist θ1, θ4, σ > 0 with

θ1 < min
{

σ, σ
√

T − 1
}

and max

{

σ,

√

2 + α + (T − 1)β

ρ
σ

}

< θ4

such that

(A3) f(k, t) ≥ 0 for each (k, t) ∈ [2, T ]N × [−θ4, θ4],

(A4)

max

{

F(θ1)

θ2
1

,
2F(θ4)

θ2
4

}

<
ρ

ρ + 2 + α + (T − 1)β

∑T

k=2 F (k, σ)

σ2
.

Then, for every

λ ∈
(

1
2 (ρ + 2 + α + (T − 1)β) σ2

∑T

k=2 F (k, σ)
,

ρ

2
min

{

θ2
1

F(θ1)
,

θ2
4

2F(θ4)

}

)

,

(1.1) possesses at least three nonnegative solutions u1, u2, u3 such that

max
k∈[2,T ]N

|u1(k)| < θ1, max
k∈[2,T ]N

|u2(k)| <
θ4√

2
, max

k∈[2,T ]N
|u3(k)| < θ4.

Proof. Choose θ2 = θ4/
√

2 and θ3 = θ4. So, from (A4), one has

F(θ2)

θ2
2

=
2F(θ4/

√
2)

θ2
4

≤ 2F(θ4)

θ2
4

<
ρ

ρ + 2 + α + (T − 1)β

∑T

k=2 F (k, σ)

σ2

(3.2)

and
F(θ3)

θ2
3 − θ2

2

=
2F(θ4)

θ2
4

<
ρ

ρ + 2 + α + (T − 1)β

∑T

k=2 F (k, σ)

σ2
. (3.3)

Moreover, taking into account that θ1 < σ, by using (A4), we have

ρ

2 + α + (T − 1)β

∑T

k=2 F (k, σ) − F(θ1)

σ2

>
ρ

2 + α + (T − 1)β

∑T

k=2 F (k, σ)

σ2
− ρ

2 + α + (T − 1)β

F(θ1)

θ2
1

>
ρ

2 + α + (T − 1)β

(

∑T

k=2 F (k, σ)

σ2
− ρ

ρ + 2 + α + (T − 1)β

∑T

k=2 F (k, σ)

σ2

)

=
ρ

ρ + 2 + α + (T − 1)β

∑T

k=2 F (k, σ)

σ2
.

Hence, from (A4), (3.2), and (3.3), it is easy to see that the assumption (A2) of Theorem 3.1 is satisfied,
and thus follows the conclusion. �

We now present the following example in order to illustrate Theorem 3.3.
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Example 3.4. Let T = 4. We consider the problem
{

∆4u(k − 2) − ∆2u(k − 1) + u(k) = λf(u), k ∈ [2, 4]N,

u(1) = ∆u(0) = ∆u(4) = ∆3u(0) = ∆3u(3) = 0,
(3.4)

where

f(ξ) =







4ξ3 if ξ ≤ 1,

4ξ +
cos(ln(ξ))

ξ
if ξ > 1.

By the expression of f , we have

F (ξ) =

{

ξ4 if ξ ≤ 1,

2ξ2 + sin(ln(ξ)) − 1 if ξ > 1.

By simple calculations, we obtain ρ = 64
5 . Taking θ1 = 1

10 , θ4 = 104, and σ = 1, all conditions in

Theorem 3.3 are satisfied. Therefore, it follows that for each

λ ∈ (47, 6400),

(3.4) possesses at least three nonnegative solutions u1, u2, u3 such that

max
k∈[2,4]N

|u1(k)| <
1

10
, max

k∈[2,4]N
|u2(k)| <

104

√
2

, max
k∈[2,4]N

|u3(k)| < 104.

We next point out a simple consequence of Theorem 3.3, in which the function f has separated
variables.

Theorem 3.5. Let f1 : [2, T ]N → R and f2 ∈ C(R,R) be two functions. Put

F̃ (t) =

∫ t

0

f2(ξ)dξ for all t ∈ R

and assume that there exist θ1, θ4, σ > 0 with

θ1 < min
{

σ, σ
√

T − 1
}

and max

{

σ,

√

2 + α + (T − 1)β

ρ
σ

}

< θ4

such that

(A5) f1(k) ≥ 0 for each k ∈ [2, T ]N and f2(ξ) ≥ 0 for each ξ ∈ [−θ4, θ4],

(A6)

max

{

max|t|≤θ1
F̃ (t)

θ2
1

,
2 max|t|≤θ4

F̃ (t)

θ2
4

}

<
ρ

ρ + 2 + α + (T − 1)β

F̃ (σ)

σ2
.

Then, for every

λ ∈
(

1
2 (ρ + 2 + α + (T − 1)β)σ2

F̃ (σ)
∑T

k=2 f1(k)
,

ρ

2
∑T

k=2 f1(k)
min

{

θ2
1

max|t|≤θ1
F̃ (t)

,
θ2

4

2 max|t|≤θ4
F̃ (t)

})

,

the problem
{

∆4u(k − 1) − α∆2u(k − 1) + βu(k) = λf1(k)f2(u(k)), k ∈ [2, T ]N,

u(1) = ∆u(0) = ∆u(T ) = ∆3u(0) = ∆3u(T − 1) = 0
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possesses at least three nonnegative solutions u1, u2, u3 such that

max
k∈[2,T ]N

|u1(k)| < θ1, max
k∈[2,T ]N

|u2(k)| <
1√
2

θ4 max
k∈[2,T ]N

|u3(k)| < θ4.

Proof. Set f(k, u) = f1(k)f2(u) for each (k, u) ∈ [2, T ]N × R. Since

F (k, ξ) = f1(k)F̃ (ξ),

from (A5) and (A6), we obtain (A3) and (A4), respectively. �

Now, we present a simple consequence of Theorem 3.3 in the case when f does not depend upon k.

Theorem 3.6. Assume that there exist θ1, θ4, σ > 0 with

θ1 < min
{

σ, σ
√

T − 1
}

and max

{

σ,

√

2 + α + (T − 1)β

ρ
σ

}

< θ4

such that

(A7) f(ξ) ≥ 0 for each ξ ∈ [−θ4, θ4],

(A8)

max

{

max|t|≤θ1
F (t)

θ2
1

,
2 max|t|≤θ4

F (t)

θ2
4

}

<
ρ

ρ + 2 + α + (T − 1)β

F (σ)

σ2
.

Then, for every

λ ∈
( 1

2 (ρ + 2 + α + (T − 1)β)σ2

(T − 1)F (σ)
,

ρ

2(T − 1)
min

{

θ2
1

max|t|≤θ1
F (t)

,
θ2

4

2 max|t|≤θ4
F (t)

})

,

the problem
{

∆4u(k − 2) − α∆2u(k − 1) + βu(k) = λf(u(k)), k ∈ [2, T ]N,

u(1) = ∆u(0) = ∆u(T ) = ∆3u(0) = ∆3u(T − 1) = 0

possesses at least three nonnegative solutions u1, u2, u3 such that

max
k∈[2,T ]N

|u1(k)| < θ1, max
k∈[2,T ]N

|u2(k)| <
1√
2

θ4, max
k∈[2,T ]N

|u3(k)| < θ4.

The following result is a consequence of Theorem 3.3.

Theorem 3.7. Let f : [2, T ]N × R → R be a continuous function such that

ξf(k, ξ) > 0 for all (k, ξ) ∈ [2, T ]N × (R \ {0}).

Assume that

(A9) lim
ξ→0

f(k,ξ)
|ξ| = lim

|ξ|→+∞

f(k, ξ)

|ξ| = 0.

Then, for every

λ > λ :=
ρ + 2 + α + (T − 1)β

2
max

{

inf
σ>0

σ2

∑T

k=2 F1(k, σ)
, inf

σ<0

(−σ)2

∑T

k=2 F (k, σ)

}

,

(1.1) possesses at least four distinct nontrivial solutions.
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Proof. Set

f1(k, ξ) =

{

f(k, ξ) if (k, ξ) ∈ [2, T ]N × [0, +∞),

0 otherwise

and

f2(k, ξ) =

{

−f(k, −ξ) if (k, ξ) ∈ [2, T ]N × [0, +∞),

0 otherwise ,

and define

F1(k, ξ) :=

∫ ξ

0

f1(k, x)dx for every (k, ξ) ∈ [2, T ]N × R.

Fix λ > λ∗ and let σ > 0 be such that

λ >
1
2 (ρ + 2 + α + (T − 1)β)σ2

∑T

k=2 F1(k, σ)
.

From

lim
ξ→0

f1(k, ξ)

|ξ| = lim
|ξ|→+∞

f1(k, ξ)

|ξ| = 0,

there exists θ1 > 0 such that

θ1 < min
{

σ, σ
√

T − 1
}

and

∑T

k=2 max|t|≤θ1
F1(k, t)

θ2
1

<
ρ

2λ
,

and there exists θ4 > 0 such that

max

{

σ,

√

2 + α + (T − 1)β

ρ
σ

}

< θ4 and

∑T

k=2 max|t|≤θ4
F1(k, t)

θ2
4

<
ρ

4λ
.

Then, (A4) in Theorem 3.3 is satisfied, and

λ ∈
(

1
2 (ρ + 2 + α + (T − 1)β)σ2

∑T

k=2 F1(k, σ)
,

ρ

2
min

{

θ2
1

∑T

k=2 max|t|≤θ1
F1(k, t)

,
θ2

4

2
∑T

k=2 max|t|≤θ4
F1(k, t)

})

.

Hence, the problem (P f1

λ ) admits two positive solutions u1 and u2, which are positive solutions of (1.1).
Next, arguing in the same way, from

lim
ξ→0

f2(k, ξ)

|ξ| = lim
|ξ|→+∞

f2(k, ξ)

|ξ| = 0,

we ensure the existence of two positive solutions u3 and u4 for the problem (P f2

λ ). Clearly, −u3 and −u4

are negative solutions of (1.1), and the conclusion is achieved. �

Remark 3.8. We explicitly observe that in Theorem 3.7, no symmetric condition on f is assumed.

However, whenever f is an odd continuous nonzero function such that

f(k, ξ) ≥ 0 for all (k, ξ) ∈ [2, T ]N × [0, +∞),

(A9) can be replaced by

(A10) lim
ξ→0+

f(k,ξ)
ξ

= lim
ξ→+∞

f(k,ξ)
ξ

= 0,

ensuring the existence of at least four distinct nontrivial solutions of (1.1) for every

λ > λ∗ := inf
σ>0

1
2 (ρ + 2 + α + (T − 1)β)σ2

∑T

k=2 F (k, σ)
.
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