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Persistence and Extinction for Stochastic HBV Epidemic Model with Treatment Cure

Rate
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abstract: With the current struggles of the world nowadays with several epidemics, modeling the dynamics
of disease outbreaks has become much more important than any time before. In this context, the present paper
aims at studying a stochastic hepatitis B virus epidemic model with treatment cure rate. Our model consists of
three epidemic compartments describing the interaction between the susceptible, the infected and the recovered
individuals; an SIR model where the infected individuals transmit the infection to the susceptible ones with a
transmission rate perturbed by white noise. Our paper begins by establishing that our hepatitis B stochastic
model has unique global solution. It moves then to giving sufficient conditions for the stochastic extinction
and persistence of the hepatitis B disease. Finally, our paper provides some numerical results to support the
analytical study, showing numerically that the treatment cure rate facilitates the extinction of the hepatitis B
disease among the population.
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1. Introduction

It is well-known that hepatitis B virus (HBV) is one of the major health problems in the world
nowadays. It is a viral infection that can cause both chronic and acute disease by attacking the liver.
According to World Health Organization (WHO), 296 million people had chronic HBV infection in 2019.
The WHO reported also that 1.5 million new infections are registered every year, and an estimated 820000
people lost their lives due to the disease in 2019, mostly due to cirrhosis and hepatocellular carcinoma
[1]. In order to reduce loss of lives and the high public health cost on society caused by the disease,
mathematical modeling has become an important tool to understand the disease and control its spread.

At the beginning of the 20th century, Kermack and McKendrich [2] developed one of the earliest
mathematical models that studied the interaction between susceptible and infected individuals; this
model was known as the SI model. Since then, modeling the dynamics of epidemic disease outbreaks
has been the central focus of many researchers, especially in recent years. These studies include, for
example, the new epidemic coronavirus disease (COVID-19) [3,4], human immunodeficiency virus (HIV)
[5,6], Hepatitis C Virus (HCV) [7,8], HBV [9,10,11] and many others. In the case of HBV, which is the
main focus of this paper, which can be prevented by safe and available vaccines providing protection of
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the population; in other words, the susceptible can be recovered after receiving an effective vaccination.
Hence, the models developed to study HBV infectious disease generally include three types of individuals,
namely the susceptible S, the infected I and the recovered R individuals. In order to have a wide view
on the HBV infection it will be more accurate to take into account three compartmental model instead
of two [12,13,14,15].

The role of the incidence rates in epidemic models is so crucial to study the dynamical behavior of the
disease. In fact, these rates can be categorized into two main types, namely the bilinear incidence rate
and the saturated incidence rate. In order to describe the HBV disease transmission coefficient, many
authors have used the bilinear incidence rate [12,13,14] while others have used a more generalized rate,
namely the saturated incidence rate [9,15]. All the afore-mentioned papers present deterministic models
for the HBV disease since they have ignored other dimensions, including the existence of randomness of
natural transmissions. In the real world, in fact, all the biological phenomena are generally subject to
environmental noises. Infections are no exception; they are always affected, as part of natural phenom-
ena, by environmental randomness. That is, random environmental fluctuation manifests itself in the
transmission coefficient, the birth and death rates, and other parameters in the system [16,17].

Many researchers have recently modeled randomness of the HBV infection by perturbing the infection
rate via introducing white noise [18,19,20,21,22,23]. On the other hand, other researchers have described
the environment fluctuation using Levy noise in the HBV model [24,25]. Recently, Khan et. al [26]
has modeled the HBV infection by an SIR stochastic epidemic model. In order to build their model,
they have imposed on the model the assumption that the HBV vaccine gives indefinite protection, and
so the individuals of the susceptible class can transit to the class of recovered individuals after taking a
successful vaccination. The authors have supposed that the infected individuals transmit the infection
to the susceptible ones with a rate noted β, the latter is perturbed by white noise in order to present
the random fluctuation environment, i.e., β → β + ηḂ(t), with B (t) is standard Brownian motion and
the intensity of the white noise is denoted by η. Actually, they have studied the disease extinction and
disease persistence, also they have derived sufficient condition for them. Their HBV stochastic epidemic
model is represented as follows











dS = (λ − βS(t)I(t) − (δ0 + µ) S(t)) dt − ηSIdB(t),

dI = (βS(t)I(t) − (δ0 + δ1 + γ) I(t)) dt + ηSIdB(t),

dR = (γI(t) + µS(t) − δ0R(t)) dt.

Where λ represents the constant birth rate, δ0 represents the natural death rate of all the population, δ1

represents the death rate as a result of the disease, µ represents the vaccination rate, while γ1 represents
the constant recovery rate for the infected individuals.

Since our contribution is motivated by the above work, we will assume that after a period of time
an infected individual can become susceptible again with a certain rate, namely the treatment cure rate
α. The schematic representation of the HBV disease with treatment cure rate is represented in Fig. 1.
In fact, this cure rate is taken into account in many diseases modeled by susceptible-infected-susceptible
(SIS) [27,28] and others modeled by SIR epidemic model [29,30]. Our main motivation will be to
add the effect of the treatment cure rate on the dynamics of the HBV disease. Our proposed model is
presented as follows











dS(t) = (λ − βS(t)I(t) − (δ0 + µ) S(t) + αI) dt − ηS(t)I(t)dB(t),

dI(t) = (βS(t)I(t) − (δ0 + δ1 + γ + α) I(t)) dt + ηS(t)I(t)dB(t),

dR(t) = (γI(t) + µS(t) − δ0R(t)) dt.

(1.1)
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Figure 1: Schematic representation of the mathematical model (1.1).

In this paper, we will study mainly the above stochastic HBV model (1.1) by establishing its well-
posedness and giving the conditions of the extinction and the persistence in mean of the HBV disease.
The following section presents the equilibria and the well-posedness of the problem. We will show in
Section 3 the stochastic analysis of the HBV model, followed in Section 4 by giving some numerical
simulations. The last section is a conclusion part of the present work.

2. Analytical results

In this section, we present the equilibria of the HBV model and we establish the well-posedness of the
problem. Then, we show that the solution of the HBV model exists and they are unique and non-negative.

2.1. The well-posedness of the problem

In order to show that the solution (S (t) , I (t) , R (t)) of the stochastic HBV model (1.1) exists and
they are unique and non-negative, we will present some preliminaries

Throughout this paper, we define a complete probability space (Ω, F, P ) with a filtration {Ft}t

satisfying the usual conditions (i.e. it is continuous and F0 contains all P-null sets), and the standard
Brownian motion t → B(t) is defined on this complete probability space. Consider the infinitesimal
operator L associated with the following 3-dimensional stochastic differential equation

dY = u(t, Y (t))dt + v(t, Y (t))dB(t), (2.1)

with Y = (y1, y2, y3), u(t, Y (t)) : R+ × R
3 → R

3, v(t, Y (t)) : R+ × R
3 → R

3 indicating the drift and
the diffusion parts of the Eq. (2.1) respectively (see [31]), we define L as follows

L =
∂

∂t
+

3
∑

i=1

ui(t, Y )
∂

∂Yi

+
1

2

3
∑

i,j=1

[

vT(t, Y )v(t, Y )
]

ij

(

∂2

∂yi∂yj

)

.

Let W ∈ C1,2(R+,R+ × R
2), if L acts on W , then

LW (t, Y ) = Wt (t, Y ) + Wy (t, Y ) a(t, Y ) +
1

2
trace[bT Wyyb],

where

Wt =
∂W

∂t
, Wy =

(

∂W

∂y1
,

∂W

∂y2
,

∂W

∂y3

)

, Wyy =

(

∂2W

∂yi∂yj

)

3×3

.

Itô formula [31], gives

dW (t, Y ) = LW (t, Y ) dt + Wy (t, Y ) b (t, Y ) dB(t). (2.2)

The main result of this subsection is given as follows

Theorem 2.1. For any initial value (S(0), I(0), R(0)) ∈ R
3
+, the solution of our proposed model (1.1) is

unique for all t ≥ 0. Besides, the solution remains in R
3
+ with probability 1, i.e., (S(t), I(t), R(t)) ∈ R

3
+

for all t ≥ 0 almost surely (a.s).
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Proof. We remark that for any initial value (S(0), I(0), R(0)) ∈ R
3
+, the drift and the diffusion coefficient

corresponding to our model (1.1) are locally Lipschitz, then there exists a unique local solution on [0,τ e),
where τ e is the explosion time. Now, we prove that τ e = ∞ a.s. Let p0 ≥ 0 be an integer sufficiently
large, so that S(0), I(0), R(0) ∈ [ 1

p0

, p0]. For each integer p ≥ p0, define the stopping time

τp = inf

{

t ∈ [0,τ e) : min {S(t), I(t), R(t)} ≤
1

p
or max {S(t), I(t), R(t)} ≥ p

}

.

In the sequel of the paper, we set inf φ = ∞, where φ denotes the empty set. In fact it is obvious that
τp increases as p → ∞. Set τ∞ = limk→∞ τk with τ∞ ≤ τ e a.s. To finish the proof if we can show that
τ∞ = ∞ a.s. then τ e = ∞ and consequently, (S(t), I(t), R(t)) ∈ R

3
+ a.s. for all t ≥ 0.

If τe 6= ∞, as a result there exists a pair of constant T > 0 and another constant ǫ ∈ (0, 1), such that

P {τ∞ ≤ T } > ǫ.

Consequently there is an integer p1 ≥ p0, such that

P {τp ≤ T } ≥ ǫ, for all p ≥ p1. (2.3)

Let N(t) = S(t) + I(t) + R(t), where N denoted the total of population then for t ≤ τp, we observe

dN(t) = (λ − δ0N(t) − δ1I(t)) dt ≤ (λ − δ0N(t)) dt. (2.4)

Solving equation (2.4), we get

N(t) ≤
λ

δ0
+

(

N(0) −
λ

δ0

)

e−δ0t.

In consequence

N(t) ≤

{ λ
δ0

, if N(0) ≤ λ
δ0

,

N(0), if N(0) > λ
δ0

.

That is to say,

N(t) ≤
λ

δ0
+

(

N(0) −
λ

δ0

)

e−δ0t ≤ M0 a.s., for all t ∈ [0, τp] , (2.5)

where M0 = max
{

N(0), λ
δ0

}

.

Now, we define a C2 -function F : R3
+ → R+, such that

(S, I, R) → S + I + R − 3 − (log S + log I + log R).

Clearly for all x > 0, we can see that x − 1 − log x ≥ 0. So H is non-negative. Let p ≥ p0 and T > 0 be
arbitrary. The application of Itô formula to the function F gives

dF (S, I, R) =

(

1 −
1

S

)

dS +
1

2S2
(dS)2

+

(

1 −
1

I

)

dI +
1

2I2
(dI)2 +

(

1 −
1

R

)

dR.

Then we find

dF (S, I, R) = LF (S, I, R)dt + η(I − S)dB(t), (2.6)
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where LF : R3
+ → R+ is given as follows

LF (S, I, R) =

(

1 −
1

S

)

(λ − βSI − (δ0 + µ) S + αI) +
1

2
η2I2

+

(

1 −
1

I

)

(βSI − (δ0 + δ1 + γ + α) I) +
1

2
η2S2

+

(

1 −
1

R

)

(γI + µS − δ0R) ,

=λ − (δ0 + µ) S + αI −
λ

S
+ βI + (δ0 + µ) − α

I

S
+

1

2
η2I2

− (δ0 + δ1 + γ + α) I − βS + (δ0 + δ1 + γ + α) +
1

2
η2S2

+ γI + µS − δ0R − γ
I

R
− µ

S

R
+ δ0,

≤λ + βI + δ0 + µ +
1

2
η2
(

S2 + I2
)

+ δ0 + α + δ1 + γ + γI + µS + δ0,

≤λ + 3δ0 + µ + η2M2 + (β + γ + µ) M + δ1 + γ + α := K.

The integration of Eq. (2.6) from 0 to τp leads to the following equation

E [H (S (τp ∧ T ) , I (τp ∧ T ) , R (τp ∧ T ))]

≤ H(S(0), I(0), R(0)) + E
[

∫ τp∧T

0
Kdt

]

≤ H(S(0), I(0), R(0)) + KT. (2.7)

Let define, Ωp = {τp ≤ T } for p ≥ p1 the equation (2.3) become P (Ωp) ≥ ǫ. Keep in mind that for every
ω ∈ Ωp, there exists at least one S (τp, ω) , I (τp , ω), R (τp, ω) that equal to p or 1

p
.

Accordingly

H (S (τp) , I (τp) , R (τp)) ≥ p − 1 − log p or H (S (τp) , I (τp) , R (τp)) ≥ 1/p − 1 + log p.

So

H (S (τp) , I (τp) , R (τp)) ≥ E

(

(p − 1 − log p) ∧

(

1

p
− 1 + log p

))

. (2.8)

From equations (2.7) and (2.8), we find

H(S(0), I(0), R(0)) + KT ≥ E [1Ωn
H (S (τp) , I (τp) , R (τp))]

≥ ǫ

[

(p − 1 − log p) ∧

(

1

p
− 1 + log p

)]

,

Where 1Ωp
is the indicator function of Ωp. Letting p → ∞ leads to the contradiction

∞ > H(S(0), I(0), R(0)) + KT = ∞,

hence τ∞ = ∞ a.s.
Finally, the HBV model (1.1) has a unique global solution (S(t), I(t), R(t)) ∈ R

3
+.

�

Remark 2.2. As a result of the inequality (2.5), if S(0) + I(0) + R(0) ≤ λ
δ0

, then N(t) ≤ λ
δ0

a.s., for all
t ≥ 0.
Therefore, the region

∆∗ =

{

(S, I, R) ∈ R
3
+ : S + I + R 6

λ

δ0

}

. (2.9)
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is almost surely positively invariant by the system (1.1).

The dynamics of our model will be studied in this region. That is to say, we assume that
(S(0), I(0), R(0)) ∈ ∆∗.

2.2. The equilibria

The HBV epidemic model has a unique disease-free equilibrium (DFE)

Ef = (Sf , If , Rf ) =

(

λ

δ0 + µ
, 0,

µλ

δ0(δ0 + µ)

)

.

The equation associated with infection is

dI

dt
= βS(t)I(t) − (δ0 + δ1 + γ + α) I(t) = F(t) − V(t),

where, F(t) = βS(t)I(t) and V(t) = (δ0 + δ1 + γ + α) I(t).
By the next generation matrix approach [32], the formula that provides us the basic reproduction number
is R0 = ρ

(

−FV −1
)

, which ρ(A) is explicitly the spectral radius of the matrix A. In our case, F =
∂F
∂I

∣

∣

Ef
= βλ

δ0+µ
and V = ∂V

∂I

∣

∣

Ef
= δ0 + δ1 + γ + α.

Then, the basic reproduction number for the corresponding deterministic version of our model (1.1) is
defined by

R0 =
βλ

(δ0 + µ) (δ0 + δ1 + γ + α)
.

This threshold describes the average number of the new HBV infected individuals produced by one HBV
infected individual in the studied susceptible population. Also, when R0 ≥ 1, we define another steady
state associated to the HBV model, namely the endemic equilibrium Ed = (Sd, Id, Rd) with

Sd =
δ0 + δ1 + γ + α

β
, Id =

(δ0 + µ) (δ0 + δ1 + γ + α)

β (δ0 + δ1 + γ)
(R0 − 1) ,

Rd =
µ(δ2

0 + δ2
1 + γ2 + αδ0 + αδ1 + αγ + δ0γ + δ1γ + 2δ0δ1)

δ0β (δ0 + δ1 + γ)
+

γ (δ0 + µ) (δ0 + δ1 + γ + α)

δ0β (δ0 + δ1 + γ)
(R0 − 1).

3. Stochastic analysis of the model

The extinction and the persistence of the HBV disease will be investigated, for this end we introduce
the following definition

〈I(t)〉 =
1

t

∫ t

0

I(r)dr.

Lemma 3.1. (Strong law of large number [33]): Let M = {M}t≥0 be a real valued continuous local
martingale vanishing at t=0, then

• limt→∞〈M, M〉t = ∞, a.s., ⇒ limt→∞
Mt

〈M,M〉t
= 0 almost surely.

• limt→∞ sup 〈M,M〉t

t
< ∞, a.s., ⇒ limt→∞ sup Mt

t
= 0, almost surely.

Definition 3.2. ( [33]): The proposed model is supposed to be persistent in mean, if

lim
t→∞

inf

∫ t

0

I(r)dr > 0 almost surely.

Lemma 3.3. ( [34]): Let g ∈ C[[0, ∞) × Ω, (0, ∞)] and G(t) ∈ C([0, ∞) × Ω, R).
If there exist positive constants λ0, λ and T, such that
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• log g(t) ≤ λt − λ0

∫ t

0 g(s)ds + G(t) almost surely for all t ≥ T ,

• limt→∞
G(t)

t
= 0 almost surely.

Then,

lim
t→∞

sup
1

t

∫ t

0

g(s)ds ≤
λ

λ0
almost surely.

3.1. The stochastic disease extinction

Now, We look into the conditions that could lead to the extinction of the studied disease. Firstly, we
define the basic reproduction number for the stochastic HBV model (1.1) as follows

Rs =
βλ

(δ0 + µ)
(

δ0 + δ1 + γ + α + η2λ2

2(δ0+µ)2

) .

Theorem 3.4. Let (S(t), I(t), R(t)) be the solution of the HBV model (1.1) with initial value
(S(0), I(0), R(0)) ∈ ∆∗.

If the two conditions Rs < 1 and β (δ0 + µ) > η2λ are verified then limt→∞

(

log I(t)
t

)

< 0 a.s.

Proof. The integration of each equation in the proposed system (1.1) gives

S(t) − S(0)

t
=

1

t

∫ t

0

{(λ − βS(r)I(r) − (δ0 + µ) S(r) + αI(r)) dr − ηS(r)I(r)dB(r)}

= λ − β〈S(t)I(t)〉 − (δ0 + µ) 〈S(t)〉 + α〈I(t)〉 −
η

t

∫ t

0

S(r)I(r)dB(r),

I(t) − I(0)

t
=

1

t

∫ t

0

{(βS(r)I(r) − (δ0 + δ1 + γ + α) I(r)) dr + ηS(r)I(r)dB(r)}

= β〈S(t)I(t)〉 − (δ0 + δ1 + γ + α) 〈I(t)〉 +
η

t

∫ t

0

S(r)I(r)dB(r),

R(t) − R(0)

t
=

1

t

∫ t

0

{γI(r) + µS(r) − δ0R(r)} dr

= γ〈I(t)〉 + µ〈S(t)〉 − δ0〈R(t)〉.

(3.1)

If we add the two first equations of (3.1) together we get

S(t) − S(0)

t
+

I(t) − I(0)

t
= λ − (δ0 + µ) 〈S(t)〉 − (δ0 + δ1 + γ) 〈I(t)〉.

Hence

〈S(t)〉 =
λ

δ0 + µ
−

δ0 + δ1 + γ

δ0 + µ
〈I(t)〉 + ζ(t), (3.2)

Where ζ is defined by

ζ(t) = −
1

δ0 + µ

[

S(t) − S(0)

t
+

I(t) − I(0)

t

]

.

Clearly when t → ∞ then ζ(t) converge towards 0. We apply the itô formula to log I(t), we get

d log I(t) =

[

βS(t) − (δ0 + δ1 + α + γ) −
1

2
η2S2(t)

]

dt + ηS(t)dB(t). (3.3)
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We integre the equation (3.3) from 0 to t and and then we divide by t, we find

log I(t) − log I(0)

t
= β〈S(t)〉 − (δ0 + δ1 + γ + α) − 1

2 η2
〈

S2(t)
〉

+ η
t

∫ t

0 S(r)dB(r)

≤ β〈S(t)〉 − (δ0 + δ1 + γ + α) − 1
2 η2〈S(t)〉2

+ η
t

∫ t

0 S(r)dB(r). (3.4)

Substituting the Eq. (3.2) in the Eq. (3.4) and considering the local continuous martingale M(t) =

η
∫ t

0 S(r)dB(r) with M(0) = 0, we achieve

log I(t) − log I(0)

t
≤β

(

λ

δ0 + µ
−

δ0 + δ1 + γ

δ0 + µ
〈I(t)〉 + ζ(t)

)

− (δ0 + δ1 + γ + α)

−
1

2
η2

(

λ

δ0 + µ
−

δ0 + δ1 + γ

δ0 + µ
〈I(t)〉 + ζ(t)

)2

+
η

t

∫ t

0

S(r)dB(r),

≤
βλ

δ0 + µ
−

β (δ0 + δ1 + γ)

δ0 + µ
〈I(t)〉

− (δ0 + δ1 + γ + α)

−
1

2

η2λ2

(δ0 + µ)2 +
η2λ (δ0 + δ1 + γ)

(δ0 + µ)2 〈I(t)〉

+
M(t)

t
+ φ(t),

Finally
log I(t) − log I(0)

t
≤ −

(

δ0 + δ1 + γ + α +
1

2

η2λ2

(δ0 + µ)2

)

(1 − Rs)

−

(

δ0 + δ1 + γ

δ0 + µ

)(

β −
η2λ

δ0 + µ

)

〈I(t)〉

+
M(t)

t
+ φ(t).

(3.5)

Where

φ(t) = βζ(t) −
1

2
η2ζ2(t) +

η2 (δ0 + δ1 + γ)

δ0 + µ
〈I(t)〉ζ(t)

−
λη2ζ(t)

δ0 + µ
−

η2

2

(δ0 + δ1 + γ)
2

(δ0 + µ)
2 〈I(t)〉2.

Besides limt→∞ sup 〈M(t),M(t)〉
t

≤ η2λ2

δ0+µ
< ∞, by Lemma 1 we can conclude limt→∞ sup M(t)

t
= 0. Also

lim
t→∞

ζ(t) = 0 as a result lim
t→∞

φ(t) = 0.

If the two conditions Rs < 1 and β (δ0 + µ) > η2λ are satisfied, then Eq. (3.5) becomes

lim
t→∞

sup
log I(t)

t
≤ −

(

δ0 + δ1 + γ + α +
1

2

η2λ

δ0 + µ

)

(1 − Rs)

−

(

δ0 + δ1 + γ

δ0 + µ

)(

β −
η2λ

δ0 + µ

)

〈I(t)〉 < 0 a.s.

(3.6)

�
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Corollary 3.5. If limt→∞
log I(t)

t
< 0 a.s., then I(t) converge exponentially towards 0 a.s., that is to say

the HBV infection dies out with probability one.
In addition limt→∞ S(t) = λ

δ0+µ
a.s., limt→∞ I(t) = 0 a.s., limt→∞ R(t) = µλ

δ0(δ0+µ) a.s.

Proof. Obviously if limt→∞
log I(t)

t
< 0 then

lim
t→∞

I(t) = 0 a.s. (3.7)

The sum of all the equations of the model (1.1), gives

d(S(t) + I(t) + R(t)) = (λ − δ0(S(t) + I(t) + R(t)) − δ1I(t)) dt. (3.8)

The solution of the Eq. (3.8) becomes

S(t) + I(t) + R(t) = e−δ0t

(

S(0) + I(0) + R(0) +

∫ t

0

(λ − δ1I(s)) eδ0sds

)

.

Using the L’Hospital rule and Eq. (3.7) we find

lim
t→∞

(S(t) + R(t)) = lim
t→∞

(

S(0) + I(0) + R(0) +
∫ t

0
(λ − δ1I(s)) eδ0sds

eδ0t
− I(t)

)

=
λ

δ0
.

Thus, we get

lim
t→∞

(S(t) + R(t)) =
λ

δ0
a.s. (3.9)

The first equation of the proposed system (1.1) with limiting system becomes

dS(t) = (λ − (δ0 + µ) S(t) + αI (t)) dt. (3.10)

The solution of the Eq. (3.10) becomes

S(t) = e−(δ0+µ)t

(

S(0) +

∫ t

0

(λ + αI(s)) e(δ0+µ)sds

)

.

Using the L’Hospital rule and Eq. (3.7) we find

lim
t→∞

S(t) = lim
t→∞

(

S(0) +
∫ t

0 (λ + αI(s)) e(δ0+µ)sds

e(δ0+µ)t

)

=
λ

δ0 + µ
.

From Equation (3.9) we obtain

lim
t→∞

R(t) =
µλ

δ0 (δ0 + µ)
a.s.

�

3.2. The stochastic disease persistence

We search the conditions that could lead to the persistence in mean of the studied HBV disease.

Theorem 3.6. If Rs > 1 and β (δ0 + µ) > η2λ, then for any initial value (S(0), I(0), R(0)) ∈ ∆∗, the
solution (S(t), I(t), R(t)) of the proposed model (1.1) has the following property

I2 ≤ lim
t→∞

inf(I(t)〉 ≤ lim
t→∞

sup〈I(t)〉 ≤ I1 a.s.,

where

I1 =
(δ0 + µ)2

(

δ0 + δ1 + γ + α + η2λ2

2(δ0+µ)2

)

(Rs − 1)

(δ0 + δ1 + γ) (β (δ0 + µ) − η2λ)
,

I2 =
(δ0 + µ)

(

δ0 + δ1 + γ + α + η2λ2

2(δ0+µ)2

)

(Rs − 1)

β (δ0 + δ1 + γ)
.
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Proof. According to the last inequality of the Eq. (3.5)

log I(t) − log I(0)

t
≤

(

δ0 + δ1 + γ + α +
1

2

η2λ2

(δ0 + µ)2

)

(Rs − 1)

−

(

δ0 + δ1 + γ

δ0 + µ

)(

β −
η2λ

δ0 + µ

)

〈I(t)〉

+
M(t)

t
+ φ(t).

From the last inequality we can conclude

log I(t)

t
≤

(

δ0 + δ1 + γ + α +
1

2

η2λ2

(δ0 + µ)
2

)

(Rs − 1)

−

(

δ0 + δ1 + γ

δ0 + µ

)(

β −
η2λ

δ0 + µ

)

〈I(t)〉

+
M(t)

t
+ φ(t) +

log I(0)

t
.

(3.11)

The inequality (3.11) can be re-written as

〈I(t)〉 ≤
(δ0 + µ)

2
(

δ0 + δ1 + γ + α + 1
2

η2λ2

(δ0+µ)2

)

(δ0 + δ1 + γ) (β (δ0 + µ) − η2λ)
(Rs − 1)

+
(δ0 + µ)

2

(δ0 + δ1 + γ) (β (δ0 + µ) − η2λ)

×

[

M(t)

t
+ φ(t) +

log I(0)

t
−

log I(t)

t

]

.

Firstly we suppose that Rs > 1 and β (δ0 + µ) > η2λ and we have lim
t→∞

φ(t) = 0. On the other hand,

since limt→∞ sup 〈M(t),M(t)〉
t

< ∞ then by Lemma 1 limt→∞ sup M(t)
t

= 0. Furthermore, the Eq. (3.11)
implies that the function I verify the conditions of the Lemma 2 then we get

lim
t→∞

sup〈I(t)〉 ≤
(δ0 + µ)

2
(

δ0 + δ1 + γ + α + 1
2

η2λ2

(δ0+µ)2

)

(δ0 + δ1 + γ) (β (δ0 + µ) − η2λ)
(Rs − 1) = I1. (3.12)

On the other hand, substituting Eq. (3.2) in the Eq. (3.4) we obtain

log I(t) − log I(0)

t
=

βλ

δ0 + µ
−

β (δ0 + δ1 + γ)

δ0 + µ
〈I(t)〉 + βφ(t)

−
1

2
η2
〈

S2(t)
〉

− (δ0 + δ1 + γ + α) +
M(t)

t
,

≥
βλ

δ0 + µ
−

β (δ0 + δ1 + γ)

δ0 + µ
〈I(t)〉 + βφ(t)

−
1

2

η2λ2

δ2
0

− (δ0 + δ1 + γ + α) +
M(t)

t
,

≥
βλ

δ0 + µ
−

β (δ0 + δ1 + γ)

δ0 + µ
〈I(t)〉 + βφ(t)

−
1

2

η2λ2

(δ0 + µ)2 − (δ0 + δ1 + γ + α) +
M(t)

t

≥ −

(

δ0 + δ1 + γ + α +
1

2

η2λ2

(δ0 + µ)
2

)

(1 − Rs)

−
β (δ0 + δ1 + γ)

δ0 + µ
〈I(t)〉 + βφ(t) +

M(t)

t
.
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Finally

log I(t) − log I(0)

t
≥

(

δ0 + δ1 + γ + α +
1

2

η2λ2

(δ0 + µ)
2

)

(Rs − 1)

−
β (δ0 + δ1 + γ)

(δ0 + µ)
〈I(t)〉 + βφ(t) +

M(t)

t
.

(3.13)

From Eq. (3.13) we obtain

〈I(t)〉 ≥
(δ0 + µ)

(

δ0 + δ1 + γ + α + 1
2

η2λ2

(δ0+µ)2

)

β (δ0 + δ1 + γ)
(Rs − 1)

+
(δ0 + µ)

β (δ0 + δ1 + γ)

[

M(t)

t
+ φ(t) +

log I(0)

t
−

log I(t)

t

]

.

Note that we have log (I(t)) ≤ log
(

λ
δ0

)

, then this inequality becomes

〈I(t)〉 ≥
(δ0 + µ)

(

δ0 + δ1 + γ + α + 1
2

η2λ2

(δ0+µ)2

)

β (δ0 + δ1 + γ)
(Rs − 1)

+
(δ0 + µ)

β (δ0 + δ1 + γ)

[

M(t)

t
+ φ(t) +

log I(0)

t
−

log (λ/δ0)

t

]

.

(3.14)

Firstly we suppose that Rs > 1, and we have lim
t→∞

φ(t) = 0. Furthermore, since limt→∞ sup 〈M(t),M(t)〉
t

<

∞ then by Lemma 1 limt→∞ sup M(t)
t

= 0. Taking the limit inferior of both side of the Eq. (3.14) we get

lim
t→∞

inf〈I(t)〉 ≥
(δ0 + µ)

(

δ0 + δ1 + γ + α + 1
2

η2λ2

(δ0+µ)2

)

β (δ0 + δ1 + γ)
(Rs − 1) = I2. (3.15)

Therefore, by Eqs. (3.12) and (3.15) we have

I2 ≤ lim
t→∞

inf(I(t)〉 ≤ lim
t→∞

sup〈I(t)〉 ≤ I1 a.s.

�

4. Numerical results

The illustration of the theoretical findings results by numerical simulations is shown in this section. In
our numerical simulations, we will solve the system (1.1) with taking into account the parameter values
from the Table 1.

Table 1: The used parameters in numerical simulation.

Notation Parameter description Fig. 2 Fig. 3 Fig. 4 Fig. 5
λ Birth rate 0.5 0.6 0.6 0.7
β Transmission rate 0.6 0.7 0.7 0.9
δ0 Natural death rate 0.1 0.1 0.1 0.1
δ1 Disease induced death rate 0.2 0.2 0.2 0.2
µ Vaccination rate 0.4 0.2 0.2 0.4
γ Recovery rate 0.4 0.4 0.4 0.4
η Amount of environmental white noise 0.6 0.25 0.6 0.1
α The treatment cure rate 0.1 0.2 0.2 −
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Fig. 2 shows the evolution of the susceptible, infected and recovered individuals during a certain
period of time. For the values listed in Table 1, we have R0 = 0.75 < 1, Rs = 0.6122 < 1 and
β(δ0 + µ) = 0.3 > η2λ = 0.18. It can be seen from Fig. 2a and Fig. 2b that the curves converge
towards the disease-free equilibrium Ef = (1, 0, 4). In other terms, the two curves which describe the
infected individuals corresponding to the deterministic and the stochastic models converge both toward
zero, which means the extinction of the HBV infection which is consistent with the theoretical results.

Fig. 3 depicts the dynamics of system (1.1) during the period of observation. For this illustration,
we consider the parameter values stated in Table 1, we get R0 = 1.5556 > 1, Rs = 1.3659 > 1 and we
have β(δ0 + µ) = 0.21 > η2λ = 0.038. Indeed, the curves in Fig. 3a and Fig. 3b converge towards
the disease equilibrium Ed = (1.2857, 0.3061, 3.3061). We can conclude also that the function which de-
scribes the infected individuals corresponding to the stochastic model obeys 0.2296 ≤ lim inft→∞〈I(t)〉 ≤
lim supt→∞〈I(t)〉 ≤ 0.2795, which means the persistence of the HBV infection which is in good agreement
with the theoretical finding.

Fig. 4 shows the behavior of the HBV infection after the period of observation. More explicitly the
plots in Fig. 4a and Fig. 4b converge respectively towards Ef = (2, 0, 4) and Ed = (1.2857, 0.3061, 3.3061).
In this case we get, R0 = 1.5556 > 1 and Rs = 0.8642 < 1. Strong random fluctuations in our system
(1.1) driven by standard Brownian motions accelerate the extinction of the infection. As a result, we
can deduce that with the same parameters, the stochastic model may indicate the extinction of the HBV
disease, whereas the deterministic model predicts that the disease will persist over time.

Fig. 5 illustrates the effect of the treatment cure rate on the HBV dynamical behavior. More clearly,
Fig. 5a and Fig. 5b correspond respectively to the susceptible and infected individuals for both the HBV
stochastic model (1.1) and its corresponding deterministic version. The numerical simulation is presented
for four different values of α, which are α = 0.2, 0.4, 0.6 , 0.8 with the value of other parameters are
listed in Table 1. The corresponding R0 are R0 = 1.4000, 1.1455, 0.9692, 0.8400 while the corresponding
Rs are Rs = 1.3849, 1.1353, 0.9620, 0.8345. Note that the values of R0 and Rs in descending order,
for the two first values of both R0 and Rs are greater than unity, while the two last values are less than
one. First, note that an increase in α results in a decrease in both R0 and Rs. Besides, with an increase
in the level of α, we remark a corresponding increase in the level of the susceptible individuals while
a corresponding decrease in the level of the infected individuals. For both deterministic and stochastic
models, the parameter α influences the behavior of the epidemic, i.e. for small values of α we note the
persistence of the HBV studied model while large values of α results in the extinction of the HBV studied
model.
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Figure 2: The dynamics of the disease showing the extinction of the HBV disease.
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Figure 3: The dynamics of the disease showing the persistence of the HBV disease.
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Figure 4: The dynamics of the disease showing the extinction of the stochastic HBV model and the
persistence for its corresponding deterministic one.
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Figure 5: The dynamics of the disease showing the effect of the treatment cure rate.

5. Conclusion

In this paper, we have formulated a stochastic HBV epidemic model; an SIR model where the infected
individuals transmit the infection to the susceptible ones with an transmission rate perturbed by white
noise. The well-posedness of the problem is proved and we have given the conditions of the disease
extinction as well as the conditions of its persistence. These conditions depend on system parameters
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and also the intensity of the white noise. Moreover, it is obvious that the extinction of the HBV disease
increases with an increase in the noise intensity, with an increasing in the value of the treatment cure
rate, or with an increasing in both. Similarly, the persistence of the disease decreases with an increasing
in the noise intensity, with an increasing in the value of the treatment cure rate, or with an increasing
in both. We have performed numerical simulations to guarantee the analytical results. It seems that
in order to modelize an epidemic disease in a realistic way, we have to add environment noise. That is
why a stochastic epidemic model is more adequate than deterministic one. As future perspective of this
present work, one can study the same problem under the effect of stochastic Lévy jump process.
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