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abstract: Time is a concept that can be defined by means of other primitive
concepts in some of the most important classical physical theories. In this paper we
discuss about some problems associated to this result.

1. Introduction

There are several kinds of definition in mathematics. For a brief reference see,
for example, [10]. In the present paper we are concerned with definitions in the
sense of Leśniewski, as presented by Patrick Suppes in [12], with some minor mod-
ifications. In this paper we present the notions of “definition” and “definability”
in a very intuitive form, but sufficiently rigorous for our purposes.

In an axiomatic system S [11] a primitive term or concept c is definable by
means of the remaining primitive ones if there is an appropriate formula, provable
in the system, that fixes the meaning of c in function of the other primitive terms
of S. When c is not definable in S, it is said to be independent of the the other
primitive terms.

There is a method, introduced by A. Padoa [9], which can be employed to
show the independence of concepts. In fact, Padoa’s method gives a necessary and
sufficient condition for independence [1,12,14].

In order to present Padoa’s method, some preliminary remarks are necessary.
Loosely speaking, if we are working in set theory, as our basic theory, an axiomatic
system S characterizes a species of mathematical structures in the sense of Bourbaki
[2]. Actually there is a close relationship between Bourbaki’s species of structures
and Suppes predicates [13]; for details see [4]. On the other hand, if our underlying
logic is higher-order logic (type theory), S determines a usual higher-order structure
[3]. In the first case, our language is the first order language of set theory, and, in
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the second, it is the language of (some) type theory. Tarski showed that Padoa’s
method is valid in the second case [14], and Beth that it is applicable in the first
[1].

From the point of view of applications of the axiomatic method, for example in
the foundations of physics, it is easier to assume that our mathematical systems
and structures are contructed in set theory [4].

A simplified and sufficiently rigorous formulation of the method, adapted to our
exposition, is described in the next paragraphs.

Let S be an axiomatic system whose primitive concepts are c1, c2, ..., cn. One
of these concepts, say ci, is independent from the remaining if and only if there are
two models of S in which c1, ..., ci−1, ci+1, ..., cn have the same interpretation,
but the interpretations of ci in such models are different.

Of course a model of S is a set-theoretical structure in which all axioms of S
are true, according to the interpretation of its primitive terms [8].

It is important to recall that, according to the theory of definition of Leśniewski
[12], a definition should satisfy the criterion of eliminability . That means that a
defined symbol should always be eliminable from any formula of the theory. Some
authors prefer to say that any definable concept is superfluous or dispensable, as
synonimous of eliminable.

2. Topology Without Topological Space

In the present section we use Padoa’s principle in topology, as an example to
ilustrate our ideas.

The standard definition of a topological space is as follows:

Definition 1 A topological space is an ordered pair 〈X, T 〉, such that the following
axioms are satisfied:

T1 X is a set.

T2 T is a set of subsets of X.

T3 ∅ ∈ T and X ∈ T , where ∅ denotes the empty set.

T4 Any arbitrary union of elements of T belongs to T .

T5 If Oi and Oj belong to T , then Oi ∩Oj also belongs to T .

Some remarks should be done:

1. T is not necessarily the power set of X.

2. The elements of T are called the open sets of X and T is a set called the
topology of X.

3. There are other equivalent definitions for topological space.

4. Many authors use to call X as the topological space itself, if there is no risk
of confusion.



Some Problems Concerning Definitions in Mathematics and Physics 23

5. By a trivial topological space we mean a topological space 〈X, T 〉 such that
its topology T is {∅, X}.

Now we can state the following theorem:

Theorem 1 In a topological space 〈X, T 〉, the topology is an independent concept
(so, undefinable), except in the trivial case where X = ∅.

Proof: According to Padoa’s method, we have to exhibt two models M1 and M2

for a topological space where X has the same interpretation, but the topology
T allows different interpretations. Let M1 be the interpretation where X is
the standard metric space of real numbers and T = {∅,<}. Now, let M2 be
the interpretation where X is the same metric space, but T is the standard
topology of <. It is easy to see that M1 and M2 are both models of a
topological space.

Theorem 2 In any topological space 〈X, T 〉, X is a definable concept.

Proof: Suppose that X is independent. In that case it would be possible to show
two models M1 and M2 for the given topological space where the topology
T corresponds to the same interpretation, but X allows at least two different
interpretations. Nevertheless, this is impossible. For, if we change the inter-
pretation of X, that would entail a change in the interpretation of T , since
one of the elements of T is alway X, according to axiom T3. Hence, X is a
dependent concept, i.e., a definable concept.

According to the last theorem, we introduce the following definition:

Definition 2 In a topological space 〈X, T 〉, we can define X as it follows:

X =
⋃

Oi∈T

Oi,

i.e., the union of all elements of the topology T .

Now we can define topological space by means of its topology only:

Definition 3 A topological space is a set T , such that the following axioms are
satisfied:

NT1 T is a set whose elements are sets.

NT2 ∅ ∈ T .

NT3 Any arbitrary union of elements of T belongs to T .

NT4 If Oi and Oj belong to T , then Oi ∩Oj ∈ T .
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One straighforward consequence from NT3 is the following fact:⋃
Oi∈T

Oi ∈ T,

which corresponds to one part of axiom T3 and guarantees the definability of X.
In other words, topology is indispensable, but the topological space X is a

derived concept.

3. Classical Physical Theories Without Time

In two recent papers [5] [6] it has been proven that time is eliminable (since
it is definable) in many important physical theories like newtonian particle me-
chanics (the non-relativistic case), hamiltonian mechanics, classical gauge theories,
general relativity, Maxwell’s electromagnetism, Dirac’s electron, and even classical
thermodynamics, which is a theory that copes with physical phenomena that are
irreversible with respect to time.

In the present paper we intend to motivate some questions which may be in-
teresting for those who are interested on some kind of link between logic and
differential equations.

In order to put our ideas in a simple form, consider a very simple physical theory,
namely, the classical particle mechanics, in the newtonian formalism, as introduced
by McKinsey, Sugar, and Suppes in 1953 [7]. We call this McKinsey-Sugar-Suppes
system of classical particle mechanics and abbreviate this terminology as MSS
system.

MSS system has six primitive notions: P , T , m, s, f , and g. P and T are sets,
m is a real-valued unary function defined on P , s and g are vector-valued functions
defined on the Cartesian product P × T , and f is a vector-valued function defined
on the Cartesian product P × P × T . Intuitivelly, P corresponds to the set of
particles and T is to be physically interpreted as a set of real numbers measuring
elapsed times (in terms of some unit of time, and measured from some origin of
time). m(p) is to be interpreted as the numerical value of the mass of p ∈ P . sp(t),
where t ∈ T , is a 3-dimensional vector which is to be physically interpreted as the
position of particle p at instant t. f(p, q, t), where p, q ∈ P , corresponds to the
internal force that particle q exerts over p, at instant t. And finally, the function
g(p, t) is to be understood as the external force acting on particle p at instant t.

Next we present the axiomatic formulation for MSS system:

Definition 4 P = 〈P, T, s,m, f ,g〉 is an MSS system if and only if the following
axioms are satisfied:

P1 P is a non-empty, finite set.

P2 T is an interval of real numbers.

P3 If p ∈ P and t ∈ T , then sp(t) is a 3-dimensional vector (sp(t) ∈ <3) such that
d2sp(t)

dt2 exists.
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P4 If p ∈ P , then m(p) is a positive real number.

P5 If p, q ∈ P and t ∈ T , then f(p, q, t) = −f(q, p, t).

P6 If p, q ∈ P and t ∈ T , then [sp(t), f(p, q, t)] = −[sq(t), f(q, p, t)].

P7 If p, q ∈ P and t ∈ T , then m(p)d2sp(t)
dt2 =

∑
q∈P f(p, q, t) + g(p, t).

The brackets [,] in axiom P6 denote external product.
Axiom P5 corresponds to a weak version of Newton’s Third Law: to every

force there is always a counterforce. Axioms P6 and P5, correspond to the strong
version of Newton’s Third Law. Axiom P6 establishes that the direction of force
and counterforce is the direction of the line defined by the coordinates of particles
p and q.

Axiom P7 corresponds to Newton’s Second Law.

Definition 5 Let P = 〈P, T, s,m, f ,g〉 be a MSS system, let P ′ be a non-empty
subset of P , let s′, g′, and m′ be, respectively, the restrictions of functions s, g,
and m with their first arguments restricted to P ′, and let f ′ be the restriction of f
with its first two arguments restricted to P ′. Then P ′ = 〈P ′, T, s′,m′, f ′,g′〉 is a
subsystem of P if ∀p, q ∈ P ′ and ∀t ∈ T ,

m′(p)
d2s′p(t)

dt2
=

∑
q∈P ′

f ′(p, q, t) + g′(p, t). (1)

Theorem 3 Every subsystem of an MSS system is again an MSS system.

Definition 6 Two MSS systems

P = 〈P, T, s,m, f ,g〉

and
P ′ = 〈P ′, T ′, s′,m′, f ′,g′〉

are equivalent if and only if P = P ′, T = T ′, s = s′, and m = m′.

Definition 7 A MSS system is isolated if and only if for every p ∈ P and t ∈ T ,
g(p, t) = 〈0, 0, 0〉.

Theorem 4 If
P = 〈P, T, s,m, f ,g〉

and
P ′ = 〈P ′, T ′, s′,m′, f ′,g′〉

are two equivalent systems of particle mechanics, then for every p ∈ P and t ∈ T∑
q∈P

f(p, q, t) + g(p, t) =
∑
q∈P ′

f ′(p, q, t) + g′(p, t).
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The embedding theorem is the following:

Theorem 5 Every MSS system is equivalent to a subsystem of an isolated system
of particle mechanics.

The next theorem can easily be proved by Padoa’s method:

Theorem 6 Mass and internal force are each independent of the remaining prim-
itive notions of MSS system.

We let the proof as an exercise to the reader.
The next theorem is rather important for our discussion on the dependence of

time with respect to the remaining primitive concepts.

Theorem 7 Time is definable from the remaining primitive concepts of MSS sys-
tem.

Proof: According to Padoa’s principle, the primitive concept T in MSS system is
independent from the remaining primitive concepts (mass, position, internal force,
and external force) iff there are two models of MSS system such that T has two
interpretations and the remaining primitive symbols have the same interpretation.
But these two interpretations are not possible, since position s, internal force f ,
and external force g are functions whose domains depend on T . If we change the
interpretation of T , then we will change the interpretation of other primitive con-
cepts, namely, s, f , and g. So, time is not independent and hence it can be defined.2

The reader will note that our proof does not show how to define time. But that
is not necessary if we want to show that time is dispensable in MSS system, since
a definition does satisfy the criterion of eliminability.

4. Questions

Some questions that we want to raise are:

1. What is the reason for the existence of so many dispensable concepts in
ordinary mathematical and physical theories? We believe that the main “vi-
lain” is the standard set-theoretical foundation that grounds mathematics
and theoretical physics. We know that it is possible to give a formal picture
for those theories without definable concepts. But the price for that is high,
at least from the pedagogical point of view. So, is it possible to present an
axiomatic formulation for mathematical and physical theories with less prim-
itive concepts, but simpler than the usual framework? Do we really need this
set-theoretical language in mathematics and physics?

2. What does the mathematician mean by “autonomous system” in the theory
of differential equations? When a mathematician says that parameter time is
definable by means of other variables, what is the meaning of that? Within
this context, does the word “definable” have the same meaning given in logic?
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If time is definable in several physical theories, can we say that these physical
theories do not allow the existence of non-autonomous systems? If the answer
to this question is positive, then the usual axiomatic framework given to
classical physical theories have very serious limitations, since autonomous
systems are demanded in many applications. Nevertheless, if the answer is
negative, then we should establish in a very cristal clear form the meaning of
terms like “time dependence” and “time independence”.

No matter what answer we get to these questions, there is a lot of work to do.
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11. Sant’Anna, A. S., O que é um Axioma (Manole, Barueri, 2003).

12. Suppes, P., Introduction to Logic, (Van Nostrand, Princeton, 1957).

13. Suppes, P., Set-Theoretical Structures in Science, mimeo. (Stanford University, 1967).

14. Tarski, A., ‘Some methodological investigations on the definability of concepts’, in A. Tarski,
Logic, Semantics, Metamathematics 296–319 (1983).

Adonai S. Sant’Anna
Department of Mathematics,
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