

(3s.) **v. 33** 2 (2015): **59–67**. ISSN-00378712 in press doi:10.5269/bspm.v33i2.21670

Statistical convergence of double sequences on probabilistic normed spaces defined by $[V, \lambda, \mu]$ -summability

Pankaj Kumar, S.S. Bhatia and Vijay Kumar

ABSTRACT: In this paper, we aim to generalize the notion of statistical convergence for double sequences on probabilistic normed spaces with the help of two nondecreasing sequences of positive real numbers $\lambda = (\lambda_n)$ and $\mu = (\mu_n)$ such that each tending to ∞ , also $\lambda_{n+1} \leq \lambda_n + 1$, $\lambda_1 = 1$, and $\mu_{n+1} \leq \mu_n + 1$, $\mu_1 = 1$. We also define generalized statistically Cauchy double sequences on PN space and establish the Cauchy convergence criteria in these spaces.

Key Words: Statistical convergence; $\lambda\text{-statistical convergence;}$ Probabilistic normed spaces.

Contents

1	Introduction	59
2	Background and preliminaries	60
3	Strong (λ, μ) -statistical convergence	

of double sequences on a PN-space

1. Introduction

Before we go into the motivation for this paper and present main results, we move through the background of the topic. Menger [12] provoked a crucial generalization of a metric space and called it a probabilistic metric space. This concept was further developed by various authors [2,3,4], [6], [11] and [23,24]. Probabilistic normed space, which is an important family of probabilistic metric spaces, were firstly defined by $\check{S}ternev$ [25]. Alsina et al. [1] gave a new definition of probabilistic normed space making $\check{S}ternev$ definition a special case. As a result, a productive theory agreeable with ordinary normed spaces and probabilistic metric spaces originated.

The notion of statistical convergence of sequence of numbers was introduced by Fast [5] and Schoenberg [22] independently in 1951 and discussed by [7], [13,14], [16,17,18,19,20,21], [26,27], [29] and [31]. During last few years, statistical convergence has been applied in various fields like fourier analysis, ergodic theory and number theory. Mursaleen [15] generalized the notion of statistical convergence with the help of a non-decreasing sequence $\lambda = (\lambda_n)$ of positive numbers tending to ∞ with $\lambda_{n+1} \leq \lambda_n + 1$, $\lambda_1 = 1$ and called respectively λ -statistical convergence. Karakus extended the concept of the statistical convergence for single and double

Typeset by ℬ^Sℋstyle. ⓒ Soc. Paran. de Mat.

 $\mathbf{62}$

²⁰⁰⁰ Mathematics Subject Classification: 40A05, 40C05, 46A45

sequences on probabilistic normed spaces in [8] and [9]. Tripathy et al. [28] discussed the double sequence spaces with the help of Orlicz function and in [30], they extended the concept to double sequence spaces of fuzzy numbers. Recently, Kumar and Mursaleen [10] defined (λ, μ) -statistical convergence of double sequences on intuitionistic fuzzy normed spaces. Following Kumar and Mursaleen [10], in this paper, we aim to define strongly (λ, μ) -statistical convergence of double sequences on probabilistic normed spaces.

2. Background and preliminaries

First, We recall some notations and basic definitions those will be used in this paper. By a distribution function we mean a function $F : \mathbb{R} \cup \{-\infty, +\infty\} \to [0, 1]$ that is left-continuous and non-decreasing on \mathbb{R} with $F(-\infty) = 0$ and $F(\infty) = 1$. We normalize all distribution functions to be left continuous on unextended real line $\mathbb{R} = (-\infty, +\infty)$. Moreover, for any $a \geq 0$, ε_a is the distribution function defined by

$$\varepsilon_a(x) = \begin{cases} 0, & x \le a \\ 1, & x > a. \end{cases}$$

Let Δ denotes the set of all the distribution functions, $\Delta^+ = \{F : F \in \Delta \text{ with } F(0) = 0\}$ and $D^+ \subseteq \Delta^+$ is the set $D^+ = \{F \in \Delta^+ : l^-F(+\infty) = 1\}$ where $l^-f(x) = \lim_{t \to x^-} f(t)$. For $F, G \in \Delta^+$, $F \leq G$ iff $F(x) \leq G(x)$ for all $x \in \mathbb{R}$ and (Δ^+, \leq) is a partially ordered set. The maximal element for Δ^+ in this order is the d.f. given by

$$\varepsilon_0(x) = \begin{cases} 0, & x \le 0\\ 1, & x > 0 \end{cases}$$

Definition 2.1. A triangle function is a mapping τ from $\Delta^+ \times \Delta^+$ into Δ^+ such that, for all F, G, H, K in Δ^+ ,

(i) $\tau(F, \varepsilon_0) = F;$ (ii) $\tau(F, G) = \tau(G, F);$ (iii) $\tau(F, G) \le \tau(H, K)$ whenever $F \le H, G \le K;$ (iv) $\tau(\tau(F, G), H) = \tau(F, \tau(G, H)).$

Particular and relevant triangle functions are the functions τ_T , τ_{T^*} and those of the form Π_T which, for any continuous *t*-norm *T*, and any x > 0, are given by

$$\tau_T(F,G)(x) = \sup\{T(F(s),G(t)) : s+t=x\}$$

$$\tau_{T^*}(F,G)(x) = \inf\{T^*(F(s),G(t)) : s+t=x\}$$

and

$$\Pi_T(F,G)(x) = T(F(x),G(x)).$$

In 1993, using triangle functions, Alsina et al. [1] defined probabilistic normed spaces as follows:

Definition 2.2. [1] A probabilistic normed space, briefly PN-space, is a quadruple (V, v, τ, τ^*) where V is a real linear space, τ and τ^* are continuous triangle functions with $\tau \leq \tau^*$ and v, the probabilistic norm, is a mapping from V into the space of distribution function Δ^+ such that writing v_p for v(p) for all p, q in V, the following conditions hold:

(i) $v_p = \varepsilon_0$ if and only if $p = \theta$, the null vector in V, (ii) $v_{-p} = v_p$, (iii) $v_{p+q} \ge \tau(v_p, v_q)$,

(iv) $v_p \leq \tau^*(v_{\alpha p}, v_{(1-\alpha)p})$ for every $\alpha \in [0, 1]$.

If, instead of (i), we only have $v_p = \varepsilon_0$, then we shall speak of a probabilistic pseudo normed space, briefly a PPN-space. If the inequality (iv) is replaced by the equality $v_p = \tau_M(v_{\alpha p}, v_{(1-\alpha)p})$, then the PN-space is called a *Šerstnev* space, in this case, a condition stronger than (ii) holds, namely

 $v_{\lambda_p} = v_p(\frac{j}{|\lambda|}), \forall \lambda \neq 0 \quad \forall p \in V,$

here j is the identity map on \mathbb{R} . A *Šerstnev* space is denoted by (V, v, τ) . There is a natural topology in PN-space (V, v, τ, τ^*) , called the strong topology. It is defined, for t > 0, by the neighbourhoods

$$N_p(t) = \{q \in V : d_S(v_{q-p}, \varepsilon_0) < t\} = \{q \in V : v_{q-p}(t) > 1 - t\}$$

The strong neighbourhood system for V is the union $\bigcup_{p \in V} \mathcal{N}_p \lambda$ where $\mathcal{N}_p = \{N_p \lambda : \lambda > 0\}$. The strong neighbourhood system for V determines a Hausdroff topology for V.

Definition 2.3. Let (V, v, τ, τ^*) be a PN-space. A sequence $(p_n)_n$ in V is said to be strongly convergent to p in V if for each $\lambda > 0$, there exists a positive integer N such that $p_n \in N_p(\lambda)$, for $n \ge N$.

Definition 2.4. Let (V, v, τ, τ^*) be a PN-space. A sequence $(p_n)_n$ in V is called strongly Cauchy sequence if, for every $\lambda > 0$, there is a positive integer N such that $v_{p_n-p_m}(\lambda) > 1 - \lambda$, whenever m, n > N.

Definition 2.5. A PN-space (V, v, τ, τ^*) is said to be strongly complete in the strong topology if and only if every strong Cauchy sequence in V is strongly convergent to a point in V.

Lemma 2.6. If $|\alpha| \leq |\beta|$, then $v_{\beta_p} \leq v_{\alpha_p}$ for every $p \in V$.

Definition 2.7. The natural density of a set K of positive integers is defined by

$$\delta(K) = \lim_{n \to \infty} \frac{1}{n} |\{k \in K : k \le n\}|$$

Where $|\{k \in K : k \leq n\}|$ denotes the number of elements of K not exceeding n.

Definition 2.8. Let (V, v, τ, τ^*) be a PN-space. A sequence $(p_n)_n$ in V is said to be strongly statistical convergent to p in V if for each $\lambda > 0$,

$$\delta(\{n \in N : p_n \notin \mathcal{N}_p(\lambda)\}) = 0$$

The element p is called the statistical limit of the sequence $(p_n)_n$ with respect to the probabilistic norm v and we write $st_v \rightarrow \lim p_n = p$

Definition 2.9. Let (V, v, τ, τ^*) be a PN-space. A sequence $(p_n)_n$ in V is called strongly statistical Cauchy sequence if , for every $\lambda > 0$, there is a positive integer N such that

$$\delta(\{n \in N : p_n \notin \mathcal{N}_{p_N}(\lambda)\}) = 0.$$

Namely, (p_n) is strong statistically Cauchy if and only if, for every $\lambda > 0$ there exists a number N such that $d_L(v_{p_n-p_N},\varepsilon_0) < \lambda$ for a.a.n.

3. Strong (λ, μ) -statistical convergence of double sequences on a **PN-space**

In this section we define and study Strong (λ, μ) -statistical convergence of double sequences on probabilistic normed spaces.

Definition 3.1. Let $\lambda = (\lambda_n)$ and $\mu = (\mu_n)$ be two nondecreasing sequences of positive real numbers such that each tending to ∞ and

 $\lambda_{n+1} \le \lambda_n + 1, \lambda_1 = 1,$

 $\mu_{n+1} \leq \mu_n + 1, \mu_1 = 1.$ Let $I_n = [n - \lambda_n + 1, n]$ and $I_m = [m - \mu_m + 1, m].$ For any set $K \subseteq N \times N$, the number

$$\delta_{\lambda,\mu}(K) = \lim_{m,n\to\infty} \frac{1}{\lambda_n \mu_m} |\{(i,j) : i \in I_n, j \in I_m, (i,j) \in K\}|,$$

is called the (λ, μ) -density of the set K provided the limit exists.

A double sequence $x = (x_{ij})$ of numbers is said to be (λ, μ) -statistical convergent to a number ξ provided that for each $\epsilon > 0$,

$$\lim_{m,n\to\infty}\frac{1}{\lambda_n\mu_m}|\{(i,j):i\in I_n,j\in I_m,|x_{ij}-\xi|\geq\epsilon\}|=0,$$

i.e., the set $K(\epsilon) = \frac{1}{\lambda_n \mu_m} |\{(i, j) : i \in I_n, j \in I_m, |x_{ij} - \xi| \ge \epsilon\}|$ has (λ, μ) -density zero. In this case the number ξ is called the (λ, μ) -statistical limit of the sequence $x = (x_{ij})$ and we write $St_{(\lambda,\mu)} - \lim_{i,j\to\infty} x_{ij} = \xi$.

Now we define the strong (λ, μ) -statistical convergence of double sequences with respect to PN-space.

Definition 3.2. Let (V, v, τ, τ^*) be a PN-space. A double sequence $x = (x_{ij})$ of elements in V is said to be strongly (λ, μ) -statistical convergent to ξ in V if for each $\lambda > 0$,

$$\delta_{(\lambda,\mu)}(\{(i,j): i \in I_n, j \in I_m, x_{ij} \notin \mathcal{N}_{\xi}(\lambda)\}) = 0.$$

equivalently

$$\delta_{(\lambda,\mu)}(\{(i,j): i \in I_n, j \in I_m, x_{ij} \in \mathcal{N}_{\xi}(\lambda)\}) = 1.$$

In this case the element ξ is called the strong (λ, μ) -statistical limit of the sequence $x = x_{ij}$ with respect to the probabilistic norm v and we write $st_v^{(\lambda,\mu)} \rightarrow \lim_{i,j\to\infty} x_{ij} = x$.

Let $St_v^{(\lambda,\mu)}$ denotes the set of all strongly (λ,μ) -statistical convergent double sequences with respect to the probabilistic norm v.

Lemma 3.3. Let (V, v, τ, τ^*) be a PN-space and $x = x_{ij}$ be a double sequence of elements in V. Then for each $\lambda > 0$, the following statements are equivalent (i) $st_v^{(\lambda,\mu)} \to \lim_{i,j\to\infty} x_{ij} = x$. (ii) $\delta_{(\lambda,\mu)}(\{(i,j): i \in I_n, j \in I_m, x_{ij} \notin \mathbb{N}_{\xi}(\lambda)\}) = 0$. (iii) $\delta_{(\lambda,\mu)}(\{(i,j): i \in I_n, j \in I_m, x_{ij} \in \mathbb{N}_{\xi}(\lambda)\}) = 1$. (iv) $st_{(\lambda,\mu)} \to \lim_{i,j\to\infty} v_{x_{ij}-\xi} = 1$.

Theorem 3.4. Let (V, v, τ, τ^*) be a PN-space. If a double sequence $x = x_{ij}$ of elements in V is strongly (λ, μ) -statistical convergent with respect to probabilistic norm v, then its $st_v^{(\lambda,\mu)}$ -limit is unique.

Proof: The proof of the Theorem can be established using standard techniques, so we omit. $\hfill \Box$

Theorem 3.5. Let (V, v, τ, τ^*) be a PN-space. If $x = x_{ij}$ be a double sequence of elements in V such that $v - \lim_{i,j\to\infty} x_{ij} = \xi$ then $st_v^{(\lambda,\mu)} - \lim_{i,j\to\infty} x_{ij} = \xi$.

Proof: Let $v - \lim_{i,j\to\infty} x_{ij} = \xi$. For each $\lambda > 0$, there exists a positive integer m such that $v_{x_{ij}-\xi}(\lambda) > 1 - \lambda$ for every $i, j \ge m$. It follows that the set $\{(i, j) : i \in I_n, j \in I_m, x_{ij} \notin \mathcal{N}_{\xi}(\lambda)\}$ has at most finitely many terms. It follows that

$$\delta_{(\lambda,\mu)}\{(i,j): i \in I_n, j \in I_m, x_{ij} \notin \mathcal{N}_{\xi}(\lambda)\} = 0$$

This shows that $st_v^{(\lambda,\mu)} - \lim_{i,j\to\infty} x_{ij} = \xi$.

Theorem 3.6. Let (V, v, τ, τ^*) be a PN space. The $st_v^{(\lambda,\mu)} - \lim_{i,j\to\infty} x_{ij} = \xi$, if and only if, there exists a subset $K = \{(i,j): i, j = 1, 2, 3, ...\}$ such that $\delta_{(\lambda,\mu)}(K) = 1$ and $v - \lim_{(i,j)\in K, i, j\to\infty} x_{ij} = \xi$.

Proof: Necessity – Suppose that $st_v^{(\lambda,\mu)} - \lim_{i,j\to\infty} x_{ij} = \xi$. For $\lambda > 0$, consider the sets

$$M_{v}(\lambda) = \{(i, j) : i \in I_{n}, j \in I_{m}, v_{x_{ij}-\xi}(\lambda) > 1 - \frac{1}{\lambda}\}$$
$$K_{v}(\lambda) = \{(i, j) : i \in I_{n}, j \in I_{m}, v_{x_{ij}-\xi}(\lambda) \le 1 - \frac{1}{\lambda}\}$$

Since $st_v^{(\lambda,\mu)} - \lim_{i,j\to\infty} x_{ij} = \xi$, it follows that $\delta_{(\lambda,\mu)}(K_v(\lambda)) = 0$. Furthermore, for $\lambda = 1, 2, 3, ...$, we observe $M_v(\lambda) \supset M_v(\lambda+1)$ and

$$\delta_{(\lambda,\mu)}(M_v(\lambda)) = 1. \tag{3.1}$$

Now we have to show that for $(i, j) \in M_v(\lambda)$, $v - \lim_{i,j\to\infty} x_{ij} = \xi$. Suppose, for $(i, j) \in M_v(\lambda)$, (x_{ij}) is not convergent to ξ with respect to the probabilistic norm v. Then, there exists some $\beta > 0$ such that

 $\{(i,j): i \in I_n, j \in I_m, v_{x_{ij}-\xi}(\lambda) \le 1-\beta\}$

for infinitely many terms (x_{ij}) . Let $M_v(\beta) = \{(i, j) : i \in I_n, j \in I_m, v_{x_{ij}-\xi}(\lambda) > 1-\beta\}$ and $\beta > \frac{1}{\lambda}$ for $\lambda = 1, 2, 3,$ Then, we have

$$\delta_{(\lambda,\mu)}(M_v(\beta)) = 0. \tag{3.2}$$

Also, $M_v(\lambda) \subset M_v(\beta)$ implies that $\delta_{(\lambda,\mu)}(M_v(\lambda)) = 0$. In this way, we obtained a contradiction to (3.1) as $\delta_{(\lambda,\mu)}(M_v(\lambda)) = 1$. Hence $v - \lim_{i,j\to\infty} x_{ij} = \xi$. **Sufficiency**- Suppose that there exists a subset $K = \{(i,j) : i, j = 1, 2, 3, ...\}$ such that $\delta_{(\lambda,\mu)}(K) = 1$ and $v - \lim_{(i,j)\in K, i,j\to\infty} x_{ij} = \xi$. But then for $\lambda > 0$, we can find out a positive integer m such that

 $\begin{aligned} v_{xij-\xi}(\lambda) &> 1-\lambda \\ \text{for all } i, j \geq m. \text{ If we take,} \\ K_v(\lambda) &= \{(i,j) : i \in I_n, j \in I_m, x_{ij} \notin N_{\xi}(\lambda) \} \\ \text{Then, it is easy to see that} \\ K_v(\lambda) &\subseteq N \times N - \{(i,j) : i \in I_n, j \in I_m, x_{ij} \in N_{\xi}(\lambda) \} \\ \text{and consequently} \\ \delta_{\lambda,\mu} K_v(\lambda) &\leq 1-1 = 0. \\ \text{Hence, } st_v^{(\lambda,\mu)} - \lim_{i,j \to \infty} x_{ij} = \xi. \end{aligned}$

Now we define strongly (λ, μ) -statistically Cauchy double sequences in PN-space and establish the Cauchy convergence criteria in these spaces.

Definition 3.7. Let (V, v, τ, τ^*) be a PN-space. A double sequence $x = (x_{ij})$ of elements in V is said to be strongly (λ, μ) -statistically Cauchy with respect to the probabilistic norm v if for each $\lambda > 0$ there exists a positive integers n and m such that for all $i, p \ge n$ and $j, q \ge m$,

$$\begin{split} &\delta_{(\lambda,\mu)}(\{(i,j):i\in I_n, j\in I_m, v_{x_{ij}-x_{pq}}(\lambda)\leq 1-\lambda\})=0.\\ & or \ equivalently\\ & \delta_{(\lambda,\mu)}(\{(i,j):i\in I_n, j\in I_m, v_{x_{ij}-x_{pq}}(\lambda)>1-\lambda\})=1. \end{split}$$

Theorem 3.8. Let (V, v, τ, τ^*) be a PN-space. If a double sequence $x = x_{ij}$ of elements in V is strongly (λ, μ) -statistical convergent, if and only if, it is strongly (λ, μ) -statistical Cauchy with respect to probabilistic norm v.

Proof: First suppose that there exists $\xi \in V$ such that $st_v^{(\lambda,\mu)} - \lim_{i,j\to\infty} x_{ij} = \xi$. Let $\lambda > 0$ be given. Choose $\gamma > 0$ such that

$$\tau(1-\gamma, 1-\gamma) > 1-\lambda \tag{3.3}$$

For $\lambda > 0$, if we define

 $A(\gamma) = \{(i,j) : i \in I_n, j \in I_m, v_{x_{ij}-\xi}(\frac{1}{\lambda}) \le 1-\gamma\}$ then

 $A^{C}(\gamma) = \{(i, j) : i \in I_{n}, j \in I_{m}, v_{x_{ij}-\xi}(\frac{1}{\lambda}) > 1 - \gamma\}$

Since $st_v^{(\lambda,\mu)} - \lim_{i,j\to\infty} x_{ij} = \xi$, it follows that $\delta_{(\lambda,\mu)}(A(\gamma)) = 0$ and consequently $\delta_{(\lambda,\mu)}(A^C(\gamma)) = 1$. Let $(p,q) \in (A^C(\lambda))$. Then

$$v_{x_{pq}-\xi}(\frac{1}{\lambda}) > 1 - \gamma. \tag{3.4}$$

If we take

 $B(\lambda) = \{(i, j) : i \in I_n, j \in I_m, v_{x_{ij}-x_{pq}}(\lambda) \leq 1-\lambda\},\$ then to prove the result it is sufficient to prove that $B(\lambda) \subseteq A(\gamma)$. For $(m, n) \in B(\lambda)$,

 $v_{x_{mn}-x_{pq}}(\lambda) \le 1 - \lambda$

If $v_{x_{mn}-x_{pq}}(\lambda) \leq 1-\lambda$, then we have $v_{x_{mn}-\xi}(\frac{1}{\lambda}) \leq 1-\gamma$ and therefore $(m,n) \in A(\gamma)$. As otherwise i.e., if $v_{x_{mn}-\xi}(\lambda) > 1-\lambda$, then by using (3.3) and (3.4) we have

$$1 - \lambda \ge v_{x_{ij} - x_{pq}}(\lambda) \ge \tau(v_{x_{mn} - \xi}(\frac{1}{\lambda}), v_{x_{pq} - \xi}(\frac{1}{\lambda})) > \tau(1 - \gamma, 1 - \gamma) > 1 - \lambda,$$

which is not possible. Hence $B(\lambda) \subseteq A(\gamma)$.

Conversely– Suppose that $x = (x_{ij})$ is strongly (λ, μ) –statistical Cauchy but not strongly (λ, μ) –statistical convergent with respect to the probabilistic norm v. Then there exists positive integers p and q such that if we take

 $A(\lambda) = \{(i, j) : i \in I_n, j \in I_m, v_{x_{ij} - x_{pq}}(\lambda) \le 1 - \lambda\}$ and

 $B(\lambda) = \{(i, j) : i \in I_n, j \in I_m, v_{x_{ij}-\xi}(\frac{1}{\lambda}) > 1 - \lambda\}.$ then $\delta_{(\lambda,\mu)}(A(\lambda)) = \delta_{(\lambda,\mu)}(B(\lambda)) = 0$ and consequently

$$\delta_{(\lambda,\mu)}(A^C(\lambda)) = \delta_{(\lambda,\mu)}(B^C(\lambda)) = 1.$$
(3.5)

Since

 $\begin{array}{l} v_{x_{ij}-x_{pq}}(\lambda) \geq 2v_{x_{ij}-\xi}(\frac{1}{\lambda}) > 1-\lambda\\ \text{If } v_{x_{ij}-\xi}(\frac{1}{\lambda}) > \frac{1-\lambda}{2}.\\ \text{It follows that} \end{array}$

 $\begin{array}{l} \delta_{(\lambda,\mu)}(\{(i,j):i\in I_n,j\in I_m,v_{x_{ij}-x_{pq}}(\lambda)>1-\lambda)=0\}\\ \text{i.e.,} \quad \delta_{(\lambda,\mu)}(A^C(\lambda))=0. \text{ But then we obtained a contradiction to } (3.5) \text{ as} \end{array}$

 $\delta_{(\lambda,\mu)}(A^C(\lambda)) = 1$. Hence, (x_{ij}) is strongly (λ,μ) -statistical convergent with respect to the probabilistic norm v.

On combining Theorem 3.6 and Theorem 3.8, we obtain the following result.

Theorem 3.9. Let (V, v, τ, τ^*) be a PN-space and $x = x_{ij}$ be a double sequence of elements in V. Then, the following conditions are equivalent:

(i) x is a strongly (λ, μ) -statistical convergent with respect to the probabilistic norm v.

(ii) x is a strongly (λ, μ) -statistical Cauchy with respect to the probabilistic norm v.

(iii) there exists a subset $K = \{(i, j) : i, j = 1, 2, 3, ...\}$ such that $\delta_{(\lambda,\mu)}(K) = 1$ and $v - \lim_{(i,j) \in K, i, j \to \infty} x_{ij} = \xi$.

Acknowledgments

The authors are grateful to the referees of the papers for their valuable suggestions which improved the readability of the paper.

References

- 1. C.Alsina, B.Schweizer and A.Sklar, On the definition of a probabilistic normed space, Aequationes Math., 46(1993), 91-98.
- C.Alsina, B.Schweizer and A.Sklar, Continuity properties of probabilistic norms, J. Math. Anal. Appl., 208(1997), 446-452.
- A.Asadollah and K.Nourouzi, Convex sets in probabilistic normed spaces, Chaos, Solitons and Fractals, 36(2)(2008), 322-328.
- 4. G.Constantin and I.Istratescu, Elements of Probabilistic Analysis with applications, Springer, Kluwer (1989).
- 5. H.Fast, Surla convergence statistique, colloq. Math., 2(1951), 241-244.
- M.J.Frank and B.Schweizer, On the duality of generalized infimal and supremal convolutions, Rend. Mat., 12(6)(1979), 1-23.
- 7. J.A.Fridy, On statistical convergence, Analysis, 5(4)(1985), 301-313.
- S.Karakus, Statistical convergence on probabilistic normed spaces, Mathematical Communications, 12(2007), 11Ũ23.
- S.Karakus and K.Demirci, Statistical convergence of double sequences on probabilistic normed spaces, Inter J. Math. Math. Sci., (2007), doi:10.1155/2007/14737
- 10. V.Kumar and M.Mursaleen, On (λ, μ) -statistiscal convergence of double sequences on intuitionistic fuzzy normed spaces, Filomat, 25(2)(2011), 109-120.
- B.Lafuerza-Guillén, J.A.Rodríguez-Lallena and C.Sempi, Some classes of probabilistic normed spaces, Rend. Mat., 17(1997), 237-252.
- 12. K.Menger, Statistical metrics, Proc. Nat. Acad. Sci. USA, 28(1942), 535-537.
- S.A. Mohiuddine, A. Alotaibi and M. Mursaleen, Statistical convergence through de la Vallée-Poussin mean in locally solid Riesz spaces, Adv. Difference Equ., 2013, 2013:66, doi:10.1186/1687-1847-2013-66.
- 14. F.Moricz, Statistical convergence of multiple sequences, Arch. Math., 81(2003), 82-89.
- 15. M.Mursaleen, λ -statistical convergence, Math. Slovaca, 50(1)(2000), 111-115.
- M.Mursaleen and H.H.E.Osama, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(2003), 223-231.
- M. Mursaleen and S.A. Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals, 41(2009), 2414-2421.
- M. Mursaleen, C. Çakan, S.A. Mohiuddine and E. Savas, Generalized statistical convergence and statitical core of double sequences, Acta Math. Sinica, 26(11)(2010), 2131-2144.
- M. Mursaleen and S.A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports, 12(64)(4) (2010), 359-371.
- M. Mursaleen and Q.M. Danish Lohani, Statistical limit superior and limit inferior in probabilistic normed spaces, Filomat, 25(3) (2011), 55-67.
- T.Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 30(1980), 139-150.
- I.J.Schoenberg, The integrability of certain function and related summability methods, Amer. Math. Monthly, 66(1959), 361-375.

- 23. B.Schweizer and A.Sklar, Statistical metric spaces, Pacific J. Math., 10(1960), 314-344.
- B.Schweizer and A.Sklar, Probabilistic Metric Spaces, 2nd ed., Dover Publication, Mineola, NY (2005).
- A.N.Šerstnev, Random normed spaces, Problems of completeness, Kazan Gos. Univ. Ucen. Zap., 122(1962), 3-20.
- B.C. Tripathy, Statistically convergent double sequences, Tamkang J. Math., 34(3) (2003), 231-237.
- B.C. Tripathy and B.Sarma, Statistically convergent difference double sequence spaces, Acta Math. Sinica(Eng. Ser.), 24(5)(2008), 737-742.
- B.C. Tripathy and B. Sarma, Vector valued double sequence spaces defined by Orlicz function, Math. Slovaca, 59(6)(2009), 767-776.
- 29. B.C. Tripathy and P. Chandra, On some generalized difference paranormed sequence spaces associated with multiplier sequences defined by modulus function, Anal. Theory Appl., 27(1)(2011), 21-27.
- B.C. Tripathy and B. Sarma, Double sequence spaces of fuzzy numbers defined by Orlicz function, Acta Math. Scientia, 31B(1)(2011), 134-140.
- B.C. Tripathy and B. Sarma, On I-convergent double sequences of fuzzy real numbers, Kyungpook Math. Journal, 52(2)(2012), 189-200.

Pankaj Kumar School of Mathematics and Computer Application, Thapar University, Patiala-147001, Punjab, India. E-mail address: pankaj.lankesh@yahoo.com

and

S.S. Bhatia School of Mathematics and Computer Application, Thapar University, Patiala-147001, Punjab, India. E-mail address: ssbhatia63@yahoo.com

and

Vijay Kumar Department of Mathematics, HCTM Technical Campus, Kaithal-136027, Haryana, India. E-mail address: vjy_kaushik@yahoo.com